展开全部
一元一次:
.列方程解比较容易的两步应用题 (1)列方程解应用题的步骤 ①弄清题意,找出未知数并用x表示; ②找出应用题中数量间的相等关系,列方程; ③解方程; ④检查,写出答案。 (2)列方程解应用题的关键 弄清题意后,找出应用题中数量间的相等关系,恰当地设未知数,列出方程。 (3)运用一般的数量关系列方程解应用题 首先未知数一定要明确,往后就不难了。依照条件,和自己设的未知数列出方程,有的题目需要运用好几次未知数,那就是一个经验问题了。加油吧!相信你一定能学好!! 这些方法只不过起一个过渡作用,真正学好方程并不需要。 加一点:你在看题目时先看问题,然后仔细地看有什么条件,看看哪些是已知的,哪些是未知的。接着思考要求出答案需要哪些条件,再利用已知条件来获得那些条件(有的简单的题目会直接给出那些条件),最后再求出答案。 用一元一次方程解应用题只不过是把答案或者求出答案需要的条件变为x,从而更好地分析题目。 如果你算数学好的话,其实一元一次方程也不是太难。下面是一般的一元一次方程的格式: 解:(问题照抄,只是“什么”改为x或根据题意来设) 依题意得(概括的用语,可以省略很多文字来说明,深受广大中学的师生所喜爱):列式(就是要你把x代入式子中,就像是你把算数的检查一样,把x当作答案来求已知条件) 解方程(就是要你把方程解出来) 答:…… or 一元一次方程应用题是七年级上学期的重点当然也是难点,它的学习对今后不等式解应用题以及函数问题有着决定性的意义,如果没有学好它,那今后的学习将显得比较困难. 一般在解决问题时第一步就是要设出未知数,未知数的设法主要有以下几种: 1,有比较关系时,如甲比乙多8,我们一般设较小的为X,这样计算时主要用的是加法不易出错; 2,有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为X,用乘法表示其余量利于计算; 3,在分数应用题中,我们设单位'1'为X, 4,在有比的问题中,我们设一份数为X, 5,在有和的问题中,我们设其中任意一个为X都可以,比如说两个班共有50人. 解应用题的基本步骤有: 1,依据题目要求设出合适的未知数; 2,根据题目实际情况找出等量关系,用文字关系式表示出来; 3,依据等量关系,把关系式中的每一项用数或者未知数表示出来列出方程; 4,解方程,依据题目问题计算; 5,把方程的解代入原题目检验. 其中的难点是第二步,找出等量关系,有些题目中的关系是比较明显的,而有的则是隐含的,需要大家去用心体会,下面我给大家示例两题: 1: 爷爷与孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘? 分析:属于和的问题,所以任意设一个为X,设爷爷赢了X题,则孙子赢了(12-X)盘,题目中的等量关系是爷爷得分=孙子得分,爷爷得分用X表示,孙子得分用3(12-X)表示,所以本题方程为 X=3(12-X),解之得X=9,则12-X=12-9=3,所以爷爷赢9盘,孙子赢3盘. 2:在一只底面直径为30cm,高为8cm,的圆锥形容器中倒满水,然后将水倒入一只底面直径为10cm的圆柱形空容器里,圆柱形容器中的水有多高? 分析:本题没有明显类型所以直接设问题,设圆柱形容器中的水有X厘米,题目中的等量关系是隐含的,是圆锥形容器中的水的体积=圆柱形容器中水的体积,分别表示后有方程 1/3*3.14*(30/2)(30/2)*8=3.14(10/2)(10/2)X,解之得X=24.
【两元一次】:
二元一次方程意味着题目中有两个未知量,解答技巧也是一样需要找等量关系,不同的是需要找两个等量关系,题目中一定隐藏着这样的条件,方法跟一元一次是一样的。两个未知数一个等式是无法解算的,所以需要找到两个就可以了。
.列方程解比较容易的两步应用题 (1)列方程解应用题的步骤 ①弄清题意,找出未知数并用x表示; ②找出应用题中数量间的相等关系,列方程; ③解方程; ④检查,写出答案。 (2)列方程解应用题的关键 弄清题意后,找出应用题中数量间的相等关系,恰当地设未知数,列出方程。 (3)运用一般的数量关系列方程解应用题 首先未知数一定要明确,往后就不难了。依照条件,和自己设的未知数列出方程,有的题目需要运用好几次未知数,那就是一个经验问题了。加油吧!相信你一定能学好!! 这些方法只不过起一个过渡作用,真正学好方程并不需要。 加一点:你在看题目时先看问题,然后仔细地看有什么条件,看看哪些是已知的,哪些是未知的。接着思考要求出答案需要哪些条件,再利用已知条件来获得那些条件(有的简单的题目会直接给出那些条件),最后再求出答案。 用一元一次方程解应用题只不过是把答案或者求出答案需要的条件变为x,从而更好地分析题目。 如果你算数学好的话,其实一元一次方程也不是太难。下面是一般的一元一次方程的格式: 解:(问题照抄,只是“什么”改为x或根据题意来设) 依题意得(概括的用语,可以省略很多文字来说明,深受广大中学的师生所喜爱):列式(就是要你把x代入式子中,就像是你把算数的检查一样,把x当作答案来求已知条件) 解方程(就是要你把方程解出来) 答:…… or 一元一次方程应用题是七年级上学期的重点当然也是难点,它的学习对今后不等式解应用题以及函数问题有着决定性的意义,如果没有学好它,那今后的学习将显得比较困难. 一般在解决问题时第一步就是要设出未知数,未知数的设法主要有以下几种: 1,有比较关系时,如甲比乙多8,我们一般设较小的为X,这样计算时主要用的是加法不易出错; 2,有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为X,用乘法表示其余量利于计算; 3,在分数应用题中,我们设单位'1'为X, 4,在有比的问题中,我们设一份数为X, 5,在有和的问题中,我们设其中任意一个为X都可以,比如说两个班共有50人. 解应用题的基本步骤有: 1,依据题目要求设出合适的未知数; 2,根据题目实际情况找出等量关系,用文字关系式表示出来; 3,依据等量关系,把关系式中的每一项用数或者未知数表示出来列出方程; 4,解方程,依据题目问题计算; 5,把方程的解代入原题目检验. 其中的难点是第二步,找出等量关系,有些题目中的关系是比较明显的,而有的则是隐含的,需要大家去用心体会,下面我给大家示例两题: 1: 爷爷与孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘? 分析:属于和的问题,所以任意设一个为X,设爷爷赢了X题,则孙子赢了(12-X)盘,题目中的等量关系是爷爷得分=孙子得分,爷爷得分用X表示,孙子得分用3(12-X)表示,所以本题方程为 X=3(12-X),解之得X=9,则12-X=12-9=3,所以爷爷赢9盘,孙子赢3盘. 2:在一只底面直径为30cm,高为8cm,的圆锥形容器中倒满水,然后将水倒入一只底面直径为10cm的圆柱形空容器里,圆柱形容器中的水有多高? 分析:本题没有明显类型所以直接设问题,设圆柱形容器中的水有X厘米,题目中的等量关系是隐含的,是圆锥形容器中的水的体积=圆柱形容器中水的体积,分别表示后有方程 1/3*3.14*(30/2)(30/2)*8=3.14(10/2)(10/2)X,解之得X=24.
【两元一次】:
二元一次方程意味着题目中有两个未知量,解答技巧也是一样需要找等量关系,不同的是需要找两个等量关系,题目中一定隐藏着这样的条件,方法跟一元一次是一样的。两个未知数一个等式是无法解算的,所以需要找到两个就可以了。
展开全部
1. 根据常见的数量关系找等量关系。
在解决有关整数或小数的实际问题时,已经掌握了一些常见的数量关系, 如速度×时间=路程,单价×数量=总价等,根据这些数量关系就可直接写出等量关系式。
2.根据图形的计算公式找等量关系。
我们知道平面图形的周长和面积计算公式,如长方形的面积=长×宽,正方形的周长=边长×4,平行四边形的面积=底×高等。这些图形的计算公式为我们提供了等量关系,需要注意的是列方程时。一般要把含有未知数的量放在等式的左边。
3. 根据关键词语找等量关系。
在实际问题的叙述中经常会出现“一共”“比……多”“比……少”“几倍”以及“和、差、积、商”等词语,我们可以抓住这些关键的词语来找等量关系。
4. 根据事情发展的经过找等量关系。
实际问题都有个发展顺序,我们可以根据事情发展的经过来找等量关系。
5. 借助线段图找等量关系。
线段图能直观形象地揭示出某些实际问题中数量之间的关系,我们可以借助线段图的直观性来分析题意,找出等量关系。
在解决有关整数或小数的实际问题时,已经掌握了一些常见的数量关系, 如速度×时间=路程,单价×数量=总价等,根据这些数量关系就可直接写出等量关系式。
2.根据图形的计算公式找等量关系。
我们知道平面图形的周长和面积计算公式,如长方形的面积=长×宽,正方形的周长=边长×4,平行四边形的面积=底×高等。这些图形的计算公式为我们提供了等量关系,需要注意的是列方程时。一般要把含有未知数的量放在等式的左边。
3. 根据关键词语找等量关系。
在实际问题的叙述中经常会出现“一共”“比……多”“比……少”“几倍”以及“和、差、积、商”等词语,我们可以抓住这些关键的词语来找等量关系。
4. 根据事情发展的经过找等量关系。
实际问题都有个发展顺序,我们可以根据事情发展的经过来找等量关系。
5. 借助线段图找等量关系。
线段图能直观形象地揭示出某些实际问题中数量之间的关系,我们可以借助线段图的直观性来分析题意,找出等量关系。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
看问的是什么就设那个为X。
一元一次方程举个例子说明:
某校七年级选出男生的1/2和12名女生参加数学竞赛,余下的男生人数恰好是所余下的女生人数的2倍。已知该年级共有学生156人,问男生,女生各有多少人?
看“余下的男生人数恰好是所余下的女生人数的2倍”这句话,看文字顺序是前面的是男生后面写的是女生,一般是设后面的是X,前面的是2X。
当然这是假设啊。。。这道题不是这么设的哈!是教你看那句有“”号的话,一元方程就是把后面设X,前者就好设了!实在是找不到应用题就搜了一道题出来。
要是二元一次就男生X女生Y,这样就更简单了!
一元一次方程举个例子说明:
某校七年级选出男生的1/2和12名女生参加数学竞赛,余下的男生人数恰好是所余下的女生人数的2倍。已知该年级共有学生156人,问男生,女生各有多少人?
看“余下的男生人数恰好是所余下的女生人数的2倍”这句话,看文字顺序是前面的是男生后面写的是女生,一般是设后面的是X,前面的是2X。
当然这是假设啊。。。这道题不是这么设的哈!是教你看那句有“”号的话,一元方程就是把后面设X,前者就好设了!实在是找不到应用题就搜了一道题出来。
要是二元一次就男生X女生Y,这样就更简单了!
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询