高数不定积分
2个回答
展开全部
∫[(x^3+x^2+2)/(x^2+2)^2]dx
=∫[(x^3+2x)/(x^2+2)^2]dx+∫[(x^2+2)/(x^2+2)^2]dx
-∫[2x/(x^2+2)^2]dx
=∫[x/(x^2+2)]dx+∫[1/(x^2+2)]dx-∫[1/(x^2+2)^2]d(x^2+2)
=(1/2)∫[1/(x^2+2)]d(x^2+2)+(√2/2)∫{1/[(x/√2)^2+1]d(x/√2)
+1/(x^2+2)
=(1/2)ln(x^2+2)+(√2/2)arctan(x/√2)+1/(x^2+2)+C。
=∫[(x^3+2x)/(x^2+2)^2]dx+∫[(x^2+2)/(x^2+2)^2]dx
-∫[2x/(x^2+2)^2]dx
=∫[x/(x^2+2)]dx+∫[1/(x^2+2)]dx-∫[1/(x^2+2)^2]d(x^2+2)
=(1/2)∫[1/(x^2+2)]d(x^2+2)+(√2/2)∫{1/[(x/√2)^2+1]d(x/√2)
+1/(x^2+2)
=(1/2)ln(x^2+2)+(√2/2)arctan(x/√2)+1/(x^2+2)+C。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |