怎么算∫√2x-x²dx的积分根号下的啊
1个回答
展开全部
∫ √(2x - x²) dx
= ∫ √[1 - (x - 1)²] dx
令x - 1 = sinz,dx = cosz dz
= ∫ cos²z dz
= ∫ (1 + cos2z)/2 dz
= (1/2)z + (1/2)sinzcosz + C
= (1/2)arcsin(x - 1) + (1/2)(x - 1)√[1 - (x - 1)²] + C
= (1/2)arcsin(x - 1) + (1/2)(x - 1)√(2x - x²) + C
= ∫ √[1 - (x - 1)²] dx
令x - 1 = sinz,dx = cosz dz
= ∫ cos²z dz
= ∫ (1 + cos2z)/2 dz
= (1/2)z + (1/2)sinzcosz + C
= (1/2)arcsin(x - 1) + (1/2)(x - 1)√[1 - (x - 1)²] + C
= (1/2)arcsin(x - 1) + (1/2)(x - 1)√(2x - x²) + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询