第四题怎么做 求过程
展开全部
设AC=x,则:EC=x
设BC=y,则:NC=y
AB^2=AC^2+BC^2-2*AC*BC*cos角ACB
4=x^2+y^2-(根号2)*xy >= 2xy-(根号2)*xy =(2-根号2)*xy
xy <= 4/(2-根号2)
xy <= 2(2+根号2)
三角形ECN面积 = (1/2)*EC*NC*sin角ECN = (1/2)xy*sin(180°-角ACB)
=(1/4)*(根号2)*xy <= (1/4)*(根号2)*2(2+根号2) = (根号2)+1
所以:三角形ECN面积的最大值 = (根号2)+1
设BC=y,则:NC=y
AB^2=AC^2+BC^2-2*AC*BC*cos角ACB
4=x^2+y^2-(根号2)*xy >= 2xy-(根号2)*xy =(2-根号2)*xy
xy <= 4/(2-根号2)
xy <= 2(2+根号2)
三角形ECN面积 = (1/2)*EC*NC*sin角ECN = (1/2)xy*sin(180°-角ACB)
=(1/4)*(根号2)*xy <= (1/4)*(根号2)*2(2+根号2) = (根号2)+1
所以:三角形ECN面积的最大值 = (根号2)+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询