求教一道平面几何证明题

正方形ABCD,M、N分别为BC、CD上的点,角MAN=45度,AF垂直于MN,求证AB=AF。... 正方形ABCD,M、N分别为BC、CD上的点,角MAN=45度,AF垂直于MN,求证AB=AF。 展开
海语天风001
高赞答主

2012-03-19 · 你的赞同是对我最大的认可哦
知道大有可为答主
回答量:1.3万
采纳率:100%
帮助的人:8901万
展开全部
证明:延长CB取点G,使BG=DN
∵正方形ABCD
∴AB=AD,∠ABC=∠ADC=∠BAD=90
∴∠ABG=90
∵BG=DN
∴△ABG全等于△ADN
∴AG=AN,∠BAG=∠DAN
∵∠BAD=90
∴∠BAM+∠MAN+∠DAN=90
∴∠BAM+∠BAG+∠MAN=90
∵∠MAN=45
∴∠BAM+∠BAG=90-∠MAN=45
∴∠GAM=45
∴∠GAM=∠MAN
∵AM=AM
∴△GAM全等于△NAM
∴∠AMB=∠AMN
∵AF⊥MN
∴∠AFM=90
∵AM=AM
∴△AMB全等于△AMF
∴AB=AF
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
lljjdd567
2012-03-19 · TA获得超过197个赞
知道答主
回答量:324
采纳率:0%
帮助的人:97万
展开全部
证明:延长CB取点E,使BG=DE
∵正方形ABCD
∴AB=AD,∠ABC=∠ADC=∠BAD=90
∴∠ABE=90
∵BE=DN
∴△ABe全等于△ADN
∴AG=AN,∠BAG=∠DAN
∵∠BAD=90

∴∠GAM=45
∴∠GAM=∠MAN
∵AM=AM
∴△GAM全等于△NAM
∴∠AMB=∠AMN
∵AF⊥MN
∴∠AFM=90
∵AM=AM
∴△AMB全等于△AMF
∴AB=AF
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
19930823yh
2012-03-20 · 超过35用户采纳过TA的回答
知道答主
回答量:96
采纳率:0%
帮助的人:94.7万
展开全部
把三角形AND绕A点顺时针旋转90度,然后发现两个顶角为45度的三角形全等应该是最简单直接的思路
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式