在梯形ABCD中,AD‖BC(BC>AD),∠D=90°,BC=CD=12,E点在边DC上,∠ABE=45°。若AE=10,求CE的长。
2个回答
展开全部
解:过B作DA的垂线交DA的延长线于M,M为垂足,
延长DM到G,使MG=CE,连接BG,
易知四边形BCDM是正方形,
所以BC=BM,∠C=∠BMG=90°,EC=GM,
∴△BEC≌△BMG(SAS),
∴BG=BE,∠ABE=∠ABG=45°,
∴△ABE≌△ABG,AG=AE=10,
设CE=x,则AM=10-x,
AD=12-(10-x)=2+x,DE=12-x,
在Rt△ADE中,AE²=AD²+DE²,
∴100=(x+2)²+(12-x)²,
即x²-10x+24=0;
解得:x1=4,x2=6.
故CE的长为4或6.
延长DM到G,使MG=CE,连接BG,
易知四边形BCDM是正方形,
所以BC=BM,∠C=∠BMG=90°,EC=GM,
∴△BEC≌△BMG(SAS),
∴BG=BE,∠ABE=∠ABG=45°,
∴△ABE≌△ABG,AG=AE=10,
设CE=x,则AM=10-x,
AD=12-(10-x)=2+x,DE=12-x,
在Rt△ADE中,AE²=AD²+DE²,
∴100=(x+2)²+(12-x)²,
即x²-10x+24=0;
解得:x1=4,x2=6.
故CE的长为4或6.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询