深度学习,包括哪些?
2020-06-09 · 百度认证:北京中公教育科技官方账号
作为人工智能最稀缺的人才之一,深度学习工程师面临近百万的缺口,成为了各大企业竞相争夺的香饽饽,月薪大都在30K-80K之间。越来越多的程序员、院校学生开始学习深度学习算法。
无论你是Python小白,还是初级算法工程师,亦或是技术骨干,甚至是技术总监,都建议你不要错过我们的《AI深度学习》。
01适合各阶段互联网人
1)Python小白快速入门
如果你马上面临毕业找工作,或者打算转到互联网IT行业,我们赠送的Python入门网课,可以让无Python编程基础的你迅速入门。之后,高阶版的《AI深度学习》,可以让你系统地入门了解深度学习的前沿技术、应用成果,助你快速入行。
2)初级算法工程师的实操指南
如果你是刚入行不到3年,还在打基础的初级算法工程师,《AI深度学习》会让你以企业级项目的实操开始,逐步提升能力。课程由中科院专家亲自传授,可反复观看,让你随时随地查漏补缺,直面复杂的开发环境,比 “百度一下” 更精准。
3)技术骨干的进阶秘籍
如果你是团队的技术骨干,《AI深度学习》可以帮助你系统梳理语音识别、图像识别、机器对话等前沿技术,搭建完整的技术体系;还能够帮你横向拓展相关领域知识,增强自身竞争力。
4)技术总监管理团队的神助攻
如果你是指点技术江山的一把手,这个紧跟市场需求开发的课程,可以帮助你快速掌握市场技术动向。课程交流群的不同学员,也可以让你了解每个层级人的真实想法,管理起来更加得心应手。
毫不夸张地说,只要你的工作与人工智能有关,《AI深度学习》就会成为你求职、工作、管理团队过程中不可或缺的神助攻。
02 更系统 更实用
为了让每个学员都能用更短的时间学到更深的知识,我们将课程浓缩到5周、30课时,时间虽短,但内容更精。6大实战项目、8大课程阶段,不论是课程的系统性还是实用性,《AI深度学习》绝对是目前最完美的存在。
1)8大授课阶段
8大授课阶段,循序渐进,以实操贯穿理论,避免纸上谈兵。
第一阶段:AI概述及前沿应用成果介绍
第二阶段:神经网络原理及TensorFlow实战
第三阶段:神经网络原理及TensorFlow实战
第四阶段:生成式对抗网络原理及项目实战
第五阶段:深度学习分布式处理项目实战
第六阶段:深度强化学习及项目实战
第七阶段:车牌识别项目实战
第八阶段:深度学习前沿技术简介
只有这样内容深入的课程,才能真正帮你快速建立、梳理相关知识体系,让你的成长更有方向、更高效。
2)严选6个项目实战
对比市面上的同类型课程,大都是局限在某一品类的项目训练,项目数量控制在3个左右。《AI深度学习》有6大实战项目,都是来自于企业的项目实操。学员在学习期间,直面复杂的开发环境,摆脱开源项目理想化开发,更加符合企业真实需求。
项目包含“手写数字识别”“文学作品文本特征向量化实战”“基于GAN生成人脸图片”“基于分布式GAN人脸图片生成”“基于深度强化学习的迷宫游戏”“企业级车牌识别”6个项目。
涵盖行业内75%技术要点,如语音识别(微信语音转文字、Siri、天猫精灵等)、图像识别(火车站人 脸识别、人脸打卡、办卡人脸识别、健康码人脸识别、违章拍摄、百度识图、淘宝识图、有声绘本)、机器对话(微软小冰、同声翻译等)都有所掌握,满足各类就业需求。
此外,课程中的知识点,都经过中科院专家实操验证,任何一个知识点拿来就能用,真正助你职场升级,是一份实打实的深度学习「葵花宝典」。
3)中科院专家多轮打磨
为了让内容更具系统性、实用性,课程全部由中科院专家亲自授课答疑。
可以说,如果你想要提升技能,在专业领域更上一步,《AI深度学习》可以成为你当下的选择!
婡深臫度学头习筿是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
背景介绍
机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。
1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断地对弈中改善自己的棋艺。4年后,这个程序战胜了设计者本人。
又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。
深度学习是学习样本数据的内在规律和表示层次,du这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很zhi大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个dao复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒版体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视权听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。