定积分 求此题详解过程

后面少打了个du... 后面少打了个du 展开
wjl371116
2012-03-20 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67429

向TA提问 私信TA
展开全部
求定积分[-π/3,π/3]∫[(3/4)tan²u+(3√3/2)tanu+9/4]du
解:原式=[-π/3,π/3]∫[(3/4)tan²u+9/4]du+[-π/3,π/3]∫[(3√3/2)tanu]du
=[-π/3,π/3]∫[(3/4)tan²u+9/4]du+0 (tanu是奇函数,在对称区间上的积分=0)
=[-π/3,π/3]∫(3/4)(tan²u+1)du+[-π/3,π/3]∫(6/4)du
=[-π/3,π/3](3/4)∫(sec²udu+[-π/3,π/3]∫(3/2)du
=[(3/4)tanu+(3/2)u]︱[-π/3,π/3]=(3/4)[tan(π/3)-tan(-π/3)]+(3/2)[(π/3)-(-π/3)]
=(3/4)(√3+√3)+(3/2)(π/3+π/3)=[(3/2)√3]+π
丘冷萱Ad
2012-03-20 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3939万
展开全部
中间的3√3/2tanu是奇函数,积分区间对称,因此这个函数的积分为0.
原式=∫[-π/3,π/3] (3/4tan²u+9/4) du
=∫[-π/3,π/3] (3/4tan²u+3/4+6/4) du
=∫[-π/3,π/3] (3/4sec²u+3/2) du
=3/4tanu+3/2u [-π/3,π/3]
=3√3/4+(3/2)*(π/3)+3√3/4+(3/2)*(π/3)
=3√3/2+π
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式