
已知3π/2<α<2π,化简:{[√(1-cosα)]+[√(1+cosα)]}/{[√(1-cosα)-√(1+cosα)]}
已知3π/2<α<2π,化简:{[√(1-cosα)]+[√(1+cosα)]}/{[√(1-cosα)-√(1+cosα)]}+[√(1+sinα)]/[√(1-sin...
已知3π/2<α<2π,化简:{[√(1-cosα)]+[√(1+cosα)]}/{[√(1-cosα)-√(1+cosα)]}+[√(1+sinα)]/[√(1-sinα)].
展开
1个回答
展开全部
:{[√(1-cosα)]+[√(1+cosα)]}/{[√(1-cosα)-√(1+cosα)]}+[√(1+sinα)]/[√(1-sinα)].
因为:{[√(1-cosα)]+[√(1+cosα)]}/{[√(1-cosα)-√(1+cosα)]}
={[√(1-cosα)]+[√(1+cosα)]}/{[√(1-cosα)-√(1+cosα)]}*[√(1-cosα)]+[√(1+cosα)]}/{[√(1-cosα)+√(1+cosα)]}
=={[√(1-cosα)]+[√(1+cosα)]}*[√(1-cosα)]+[√(1+cosα)]}/{根号(1-cos^2α)}
={(1-cosα)]+(1+cosα)+2√(1-cosα)(1+cosα)}/(-sina)
=(2-2sina)/(-sina) (注意sina<0)
又[√(1+sinα)]/[√(1-sinα)].=(1+sina)/根号(1-sin^2a)=(1+sina)/cosa (cosa>0)
原式=(2sina-2)/sina+(1+sina)/cosa
=2-2/sina+tga+1/cosa
因为:{[√(1-cosα)]+[√(1+cosα)]}/{[√(1-cosα)-√(1+cosα)]}
={[√(1-cosα)]+[√(1+cosα)]}/{[√(1-cosα)-√(1+cosα)]}*[√(1-cosα)]+[√(1+cosα)]}/{[√(1-cosα)+√(1+cosα)]}
=={[√(1-cosα)]+[√(1+cosα)]}*[√(1-cosα)]+[√(1+cosα)]}/{根号(1-cos^2α)}
={(1-cosα)]+(1+cosα)+2√(1-cosα)(1+cosα)}/(-sina)
=(2-2sina)/(-sina) (注意sina<0)
又[√(1+sinα)]/[√(1-sinα)].=(1+sina)/根号(1-sin^2a)=(1+sina)/cosa (cosa>0)
原式=(2sina-2)/sina+(1+sina)/cosa
=2-2/sina+tga+1/cosa
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询