2. F(x,y)是二维随机变量(X ,Y)的联合分布函数,则F(-∞,y)=_?

 我来答
热点那些事儿
高粉答主

2021-01-20 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:207万
展开全部

这是二维随机变量的定义。

F(-∞,y)=0

因为这相当于F关于x变量的分布函数在-∞的取值

F(a,b)+1-[F1(a)+F2(b)]

由于F(a,b)=P{X≤a,Y≤b},F1(a)=P{X≤a,Y<bai+∞},F2(b)=P{X<+∞,Y≤b},

而:

P{X>a,Y>b}=P{X<+∞,Y<+∞}-P{X≤a,Y<+∞}-P{X<+∞,Y≤b}+P{X≤a,Y≤b}

∴P{X>a,Y>b}=1-F1(a)-F2(b)+F(a,b)=F(a,b)+1-[F1(a)+F2(b)]

扩展资料

在许多生产实际与理论研究中,一个随机现象常常需要同时用几个随机变量去描述,例如,晶体管放大器中某一时刻的噪声电流就要用随机振幅和随机相位两个随机变量来表征。

又如当一个确定的正弦信号,经过随机起伏信道传输后,到达接收点时其振幅、相位和角频率已不再是确定的了,而变成随机参数。这时的信号在某一时刻就要用三个随机变量来描述。如此可以推广到”个随机变量的情况。

参考资料来源:百度百科-联合分布函数

帐号已注销
2020-12-27 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

这是二维随机变量的定义。

F(-∞,y)=0

因为这相当于F关于x变量的分布函数在-∞的取值

F(a,b)+1-[F1(a)+F2(b)]

由于F(a,b)=P{X≤a,Y≤b},F1(a)=P{X≤a,Y<bai+∞},F2(b)=P{X<+∞,Y≤b},

而:

P{X>a,Y>b}=P{X<+∞,Y<+∞}-P{X≤a,Y<+∞}-P{X<+∞,Y≤b}+P{X≤a,Y≤b}

∴P{X>a,Y>b}=1-F1(a)-F2(b)+F(a,b)=F(a,b)+1-[F1(a)+F2(b)]

扩展资料:

将二维随机变量(X,Y)看成是平面上随机点的坐标,分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在如图以(x,y)为顶点而位于该点左下方的无穷矩形区域内的概率。

联合分布函数(joint distribution function)亦称多维分布函数。以二维情形为例,设(X,Y)是二维随机变量,x,y是任意实数,二元函数:F(x,y)=P({X≤x∩Y≤y})=P(X≤x,Y≤y),被称二维随机变量(X,Y)的分布函数,或称为X和Y的联合分布函数。

参考资料来源:百度百科-联合分布函数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
旅游小达人Ky
高粉答主

2021-01-17 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1893
采纳率:100%
帮助的人:38.8万
展开全部

这是二维随机变量的定义。

F(-∞,y)=0

因为这相当于F关于x变量的分布函数在-∞的取值

F(a,b)+1-[F1(a)+F2(b)]

由于F(a,b)=P{X≤a,Y≤b},F1(a)=P{X≤a,Y<+∞},F2(b)=P{X<+∞,Y≤b},

而:

P{X>a,Y>b}=P{X<+∞,Y<+∞}-P{X≤a,Y<+∞}-P{X<+∞,Y≤b}+P{X≤a,Y≤b}

∴P{X>a,Y>b}=1-F1(a)-F2(b)+F(a,b)=F(a,b)+1-[F1(a)+F2(b)]

扩展资料

在许多生产实际与理论研究中,一个随机现象常常需要同时用几个随机变量去描述,例如,晶体管放大器中某一时刻的噪声电流就要用随机振幅和随机相位两个随机变量来表征。

又如当一个确定的正弦信号,经过随机起伏信道传输后,到达接收点时其振幅、相位和角频率已不再是确定的了,而变成随机参数。这时的信号在某一时刻就要用三个随机变量来描述。如此可以推广到”个随机变量的情况。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-05-30 · TA获得超过1070个赞
知道小有建树答主
回答量:1241
采纳率:79%
帮助的人:573万
展开全部
这是二维随机变量的定义。
F(-∞,y)=0
因为这相当于F关于x变量的分布函数在-∞的取值
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式