什么是几何图形
8个回答
展开全部
几何体(geometricsolid)亦称立体,是立体几何的基本概念之一。
几何体概念产生于人们对客观世界中各种物体的数学抽象,当人们只考虑物体的形状、大小、位置关系等数学性质,而不考虑它的物理的、化学的、生物的、社会的等属性时,就获得几何体的概念,在几何学中,人们把若干几何面(平面或曲面)所围成的有限形体称为几何体。
围成几何体的面称为几何体的界面或表面,不同界面的交线称为几何体的棱线,不同棱线的交点称为几何体的顶点。
几何体也可看成空间中若干几何面分割出来的有限空间区域,立体几何首先研究的是一些较简单的几何体的几何性质,如多面体、旋转体以及它们的组合体等
几何体概念产生于人们对客观世界中各种物体的数学抽象,当人们只考虑物体的形状、大小、位置关系等数学性质,而不考虑它的物理的、化学的、生物的、社会的等属性时,就获得几何体的概念,在几何学中,人们把若干几何面(平面或曲面)所围成的有限形体称为几何体。
围成几何体的面称为几何体的界面或表面,不同界面的交线称为几何体的棱线,不同棱线的交点称为几何体的顶点。
几何体也可看成空间中若干几何面分割出来的有限空间区域,立体几何首先研究的是一些较简单的几何体的几何性质,如多面体、旋转体以及它们的组合体等
DFRobot
2024-11-10 广告
2024-11-10 广告
图形化编程是一种直观的编程方式,它通过拖拽图形化的编程积木来构建程序,降低了编程的学习门槛。在上海智位机器人股份有限公司,我们致力于将图形化编程应用于机器人教育等领域,使学习者能够以更加轻松、有趣的方式掌握编程技能。我们的图形化编程平台界面...
点击进入详情页
本回答由DFRobot提供
展开全部
一、什么是几何图形:
点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric
figure)
几何图形一般分为立体图形(solid
figure)和平面图形(plane
figure)。
二、我们所熟悉的几何图形:
正方形
a-边长
C=4a
S=a2
长方形
a和b-边长
C=2(a+b)
S=ab
三角形
a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2
S=ah/2
?
=ab/2·sinC
?
=[s(s-a)(s-b)(s-c)]1/2
?
=a2sinBsinC/(2sinA)
四边形
d,D-对角线长
α-对角线夹角
S=dD/2·sinα
平行四边形
a,b-边长
h-a边的高
α-两边夹角
S=ah
?
=absinα
菱形
a-边长
α-夹角
D-长对角线长
d-短对角线长
S=Dd/2
?
=a2sinα
梯形
a和b-上、下底长
h-高
m-中位线长
S=(a+b)h/2
?
=mh
圆
r-半径
d-直径
C=πd=2πr
S=πr2
?
=πd2/4
扇形
r-扇形半径
a-圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形
l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数
S=r2/2·(πα/180-sinα)
?
=r2arccos[(r-h)/r]
-
(r-h)(2rh-h2)1/2
?
=παr2/360
-
b/2·[r2-(b/2)2]1/2
?
=r(l-b)/2
+
bh/2
?
≈2bh/3
圆环
R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径
S=π(R2-r2)
?
=π(D2-d2)/4
椭圆
D-长轴
d-短轴
S=πDd/4
立方图形
名称
符号
面积S和体积V
正方体
a-边长
S=6a2
V=a3
长方体
a-长
b-宽
c-高
S=2(ab+ac+bc)
V=abc
棱柱
S-底面积
h-高
V=Sh
棱锥
S-底面积
h-高
V=Sh/3
棱台
S1和S2-上、下底面积
h-高
V=h[S1+S2+(S1S1)1/2]/3
拟柱体
S1-上底面积
S2-下底面积
S0-中截面积
h-高
V=h(S1+S2+4S0)/6
圆柱
r-底半径
h-高
C-底面周长
S底-底面积
S侧-侧面积
S表-表面积
C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
?
=πr2h
空心圆柱
R-外圆半径
r-内圆半径
h-高
V=πh(R2-r2)
直圆锥
r-底半径
h-高
V=πr2h/3
圆台
r-上底半径
R-下底半径
h-高
V=πh(R2+Rr+r2)/3
球
r-半径
d-直径
V=4/3πr3=πd2/6
球缺
h-球缺高
r-球半径
a-球缺底半径
V=πh(3a2+h2)/6
?
=πh2(3r-h)/3
a2=h(2r-h)
球台
r1和r2-球台上、下底半径
h-高
V=πh[3(r12+r22)+h2]/6
圆环体
R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径
V=2π2Rr2
?
=π2Dd2/4
桶状体
D-桶腹直径
d-桶底直径
h-桶高
V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)
点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric
figure)
几何图形一般分为立体图形(solid
figure)和平面图形(plane
figure)。
二、我们所熟悉的几何图形:
正方形
a-边长
C=4a
S=a2
长方形
a和b-边长
C=2(a+b)
S=ab
三角形
a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2
S=ah/2
?
=ab/2·sinC
?
=[s(s-a)(s-b)(s-c)]1/2
?
=a2sinBsinC/(2sinA)
四边形
d,D-对角线长
α-对角线夹角
S=dD/2·sinα
平行四边形
a,b-边长
h-a边的高
α-两边夹角
S=ah
?
=absinα
菱形
a-边长
α-夹角
D-长对角线长
d-短对角线长
S=Dd/2
?
=a2sinα
梯形
a和b-上、下底长
h-高
m-中位线长
S=(a+b)h/2
?
=mh
圆
r-半径
d-直径
C=πd=2πr
S=πr2
?
=πd2/4
扇形
r-扇形半径
a-圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形
l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数
S=r2/2·(πα/180-sinα)
?
=r2arccos[(r-h)/r]
-
(r-h)(2rh-h2)1/2
?
=παr2/360
-
b/2·[r2-(b/2)2]1/2
?
=r(l-b)/2
+
bh/2
?
≈2bh/3
圆环
R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径
S=π(R2-r2)
?
=π(D2-d2)/4
椭圆
D-长轴
d-短轴
S=πDd/4
立方图形
名称
符号
面积S和体积V
正方体
a-边长
S=6a2
V=a3
长方体
a-长
b-宽
c-高
S=2(ab+ac+bc)
V=abc
棱柱
S-底面积
h-高
V=Sh
棱锥
S-底面积
h-高
V=Sh/3
棱台
S1和S2-上、下底面积
h-高
V=h[S1+S2+(S1S1)1/2]/3
拟柱体
S1-上底面积
S2-下底面积
S0-中截面积
h-高
V=h(S1+S2+4S0)/6
圆柱
r-底半径
h-高
C-底面周长
S底-底面积
S侧-侧面积
S表-表面积
C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
?
=πr2h
空心圆柱
R-外圆半径
r-内圆半径
h-高
V=πh(R2-r2)
直圆锥
r-底半径
h-高
V=πr2h/3
圆台
r-上底半径
R-下底半径
h-高
V=πh(R2+Rr+r2)/3
球
r-半径
d-直径
V=4/3πr3=πd2/6
球缺
h-球缺高
r-球半径
a-球缺底半径
V=πh(3a2+h2)/6
?
=πh2(3r-h)/3
a2=h(2r-h)
球台
r1和r2-球台上、下底半径
h-高
V=πh[3(r12+r22)+h2]/6
圆环体
R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径
V=2π2Rr2
?
=π2Dd2/4
桶状体
D-桶腹直径
d-桶底直径
h-桶高
V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2010-12-19
13:37一、什么是几何图形:
点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric
figure)
几何图形一般分为立体图形(solid
figure)和平面图形(plane
figure)。
二、我们所熟悉的几何图形:
正方形
a-边长
C=4a
S=a2
长方形
a和b-边长
C=2(a+b)
S=ab
三角形
a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2
S=ah/2
?
=ab/2·sinC
?
=[s(s-a)(s-b)(s-c)]1/2
?
=a2sinBsinC/(2sinA)
四边形
d,D-对角线长
α-对角线夹角
S=dD/2·sinα
平行四边形
a,b-边长
h-a边的高
α-两边夹角
S=ah
?
=absinα
菱形
a-边长
α-夹角
D-长对角线长
d-短对角线长
S=Dd/2
?
=a2sinα
梯形
a和b-上、下底长
h-高
m-中位线长
S=(a+b)h/2
?
=mh
圆
r-半径
d-直径
C=πd=2πr
S=πr2
?
=πd2/4
扇形
r-扇形半径
a-圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形
l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数
S=r2/2·(πα/180-sinα)
?
=r2arccos[(r-h)/r]
-
(r-h)(2rh-h2)1/2
?
=παr2/360
-
b/2·[r2-(b/2)2]1/2
?
=r(l-b)/2
+
bh/2
?
≈2bh/3
圆环
R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径
S=π(R2-r2)
?
=π(D2-d2)/4
椭圆
D-长轴
d-短轴
S=πDd/4
立方图形
名称
符号
面积S和体积V
正方体
a-边长
S=6a2
V=a3
长方体
a-长
b-宽
c-高
S=2(ab+ac+bc)
V=abc
棱柱
S-底面积
h-高
V=Sh
棱锥
S-底面积
h-高
V=Sh/3
棱台
S1和S2-上、下底面积
h-高
V=h[S1+S2+(S1S1)1/2]/3
拟柱体
S1-上底面积
S2-下底面积
S0-中截面积
h-高
V=h(S1+S2+4S0)/6
圆柱
r-底半径
h-高
C-底面周长
S底-底面积
S侧-侧面积
S表-表面积
C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
?
=πr2h
空心圆柱
R-外圆半径
r-内圆半径
h-高
V=πh(R2-r2)
直圆锥
r-底半径
h-高
V=πr2h/3
圆台
r-上底半径
R-下底半径
h-高
V=πh(R2+Rr+r2)/3
球
r-半径
d-直径
V=4/3πr3=πd2/6
球缺
h-球缺高
r-球半径
a-球缺底半径
V=πh(3a2+h2)/6
?
=πh2(3r-h)/3
a2=h(2r-h)
球台
r1和r2-球台上、下底半径
h-高
V=πh[3(r12+r22)+h2]/6
圆环体
R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径
V=2π2Rr2
?
=π2Dd2/4
桶状体
D-桶腹直径
d-桶底直径
h-桶高
V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)
我是最聪明的对吧:
13:37一、什么是几何图形:
点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric
figure)
几何图形一般分为立体图形(solid
figure)和平面图形(plane
figure)。
二、我们所熟悉的几何图形:
正方形
a-边长
C=4a
S=a2
长方形
a和b-边长
C=2(a+b)
S=ab
三角形
a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2
S=ah/2
?
=ab/2·sinC
?
=[s(s-a)(s-b)(s-c)]1/2
?
=a2sinBsinC/(2sinA)
四边形
d,D-对角线长
α-对角线夹角
S=dD/2·sinα
平行四边形
a,b-边长
h-a边的高
α-两边夹角
S=ah
?
=absinα
菱形
a-边长
α-夹角
D-长对角线长
d-短对角线长
S=Dd/2
?
=a2sinα
梯形
a和b-上、下底长
h-高
m-中位线长
S=(a+b)h/2
?
=mh
圆
r-半径
d-直径
C=πd=2πr
S=πr2
?
=πd2/4
扇形
r-扇形半径
a-圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形
l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数
S=r2/2·(πα/180-sinα)
?
=r2arccos[(r-h)/r]
-
(r-h)(2rh-h2)1/2
?
=παr2/360
-
b/2·[r2-(b/2)2]1/2
?
=r(l-b)/2
+
bh/2
?
≈2bh/3
圆环
R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径
S=π(R2-r2)
?
=π(D2-d2)/4
椭圆
D-长轴
d-短轴
S=πDd/4
立方图形
名称
符号
面积S和体积V
正方体
a-边长
S=6a2
V=a3
长方体
a-长
b-宽
c-高
S=2(ab+ac+bc)
V=abc
棱柱
S-底面积
h-高
V=Sh
棱锥
S-底面积
h-高
V=Sh/3
棱台
S1和S2-上、下底面积
h-高
V=h[S1+S2+(S1S1)1/2]/3
拟柱体
S1-上底面积
S2-下底面积
S0-中截面积
h-高
V=h(S1+S2+4S0)/6
圆柱
r-底半径
h-高
C-底面周长
S底-底面积
S侧-侧面积
S表-表面积
C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
?
=πr2h
空心圆柱
R-外圆半径
r-内圆半径
h-高
V=πh(R2-r2)
直圆锥
r-底半径
h-高
V=πr2h/3
圆台
r-上底半径
R-下底半径
h-高
V=πh(R2+Rr+r2)/3
球
r-半径
d-直径
V=4/3πr3=πd2/6
球缺
h-球缺高
r-球半径
a-球缺底半径
V=πh(3a2+h2)/6
?
=πh2(3r-h)/3
a2=h(2r-h)
球台
r1和r2-球台上、下底半径
h-高
V=πh[3(r12+r22)+h2]/6
圆环体
R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径
V=2π2Rr2
?
=π2Dd2/4
桶状体
D-桶腹直径
d-桶底直径
h-桶高
V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)
我是最聪明的对吧:
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你好11
.
点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric
figure)。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
.
点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric
figure)。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询