已知函数f(X)=(sin2x+cos2x+1)/2cosx,求函数值域
展开全部
先化简
f(x)
=(sin2x+cos2x+1)/2cosx
=(2sinxcosx+2(cosx)^2-1+1)/(2cosx)
=sinx+cosx
=√2(√2/2sinx+√2/2cosx)
=√2(sinxcosπ/4+sinπ/4cosx)
=√2sin(x+π/4)
-1<=sin(x+π/4)<=1
所以-√2<=f(x)<=√2
又因为cosx≠0,即x≠kπ
sin(x+π/4)≠±√2/2
f(x)≠±1
所以-√2<=f(x)<=√2,且f(x)≠±1
f(x)
=(sin2x+cos2x+1)/2cosx
=(2sinxcosx+2(cosx)^2-1+1)/(2cosx)
=sinx+cosx
=√2(√2/2sinx+√2/2cosx)
=√2(sinxcosπ/4+sinπ/4cosx)
=√2sin(x+π/4)
-1<=sin(x+π/4)<=1
所以-√2<=f(x)<=√2
又因为cosx≠0,即x≠kπ
sin(x+π/4)≠±√2/2
f(x)≠±1
所以-√2<=f(x)<=√2,且f(x)≠±1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询