已知函数f(x)和g(x)的图像关于原点对称,且f(x)=x^2+2x.
5个回答
展开全部
y=f(x)=x^2+2x
关于
原点对称
即x和y都加上
负号
所以-y=(-x)^2+2(-x)
所以g(x)=y=-x^2+2x
g(x)>=f(x)-|x-1|
-x^2+2x>=x^2+2x-|x-1|
x>=1,则-x^2+2x>=x^2+2x-x+1
2x^2-x+1<=0,不成立
x<1,则-x^2+2x>=x^2+2x+x-1
2x^2+x-1<=0
(2x-1)(x+1)<=0
-1<=x<1/2,符合x<1
所以-1<=x<1/2
h(x)=-x^2+2x-nx^2-2nx+1=-(n+1)x^2+(2-2n)x+1
若n=-1,则h(x)=-4x+1,符合在[-1,1]上位
增函数
n不等于-1,则h(x)是二次函数
若n>-1,则-(n+1)<0,开口向下
所以在
对称轴
x=(1-n)/(n+1)左边是增函数
所以x=(1-n)/(n+1)在[-1,1]右边
所以(1-n)/(n+1)>=1
n>-1,n+1>0
所以两边乘n+1
1-n>=n+1
n<=0
所以-1<n<=0
若n<-1,则-(n+1)>0,开口向上
所以在对称轴x=(1-n)/(n+1)右边是增函数
所以x=(1-n)/(n+1)在[-1,1]左边
所以(1-n)/(n+1)<=-1
n<-1,n+1<0
所以两边乘n+1
1-n>=-(n+1)=-n-1
1>=-1,成立
所以n<-1
综上n<=0
关于
原点对称
即x和y都加上
负号
所以-y=(-x)^2+2(-x)
所以g(x)=y=-x^2+2x
g(x)>=f(x)-|x-1|
-x^2+2x>=x^2+2x-|x-1|
x>=1,则-x^2+2x>=x^2+2x-x+1
2x^2-x+1<=0,不成立
x<1,则-x^2+2x>=x^2+2x+x-1
2x^2+x-1<=0
(2x-1)(x+1)<=0
-1<=x<1/2,符合x<1
所以-1<=x<1/2
h(x)=-x^2+2x-nx^2-2nx+1=-(n+1)x^2+(2-2n)x+1
若n=-1,则h(x)=-4x+1,符合在[-1,1]上位
增函数
n不等于-1,则h(x)是二次函数
若n>-1,则-(n+1)<0,开口向下
所以在
对称轴
x=(1-n)/(n+1)左边是增函数
所以x=(1-n)/(n+1)在[-1,1]右边
所以(1-n)/(n+1)>=1
n>-1,n+1>0
所以两边乘n+1
1-n>=n+1
n<=0
所以-1<n<=0
若n<-1,则-(n+1)>0,开口向上
所以在对称轴x=(1-n)/(n+1)右边是增函数
所以x=(1-n)/(n+1)在[-1,1]左边
所以(1-n)/(n+1)<=-1
n<-1,n+1<0
所以两边乘n+1
1-n>=-(n+1)=-n-1
1>=-1,成立
所以n<-1
综上n<=0
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
g(x)=-(x^2-2x)=-x^2+2x
2.-x^2+2x≥x^2+2x-|x-1|
2x^2-|x-1|<=0
当x>=1,
2x^2-x+1<=0
是空集
当x<1,
2x^2+x-1<=0
-1
<=x<=1/2
所以解是
-1
<=x<=1/2
3.
h(x)=g(x)-λf(x)=-x^2+2x-λ(x^2+2x)=(-1-λ)x^2+(2-2λ)x=(-1-λ)(x+(1-λ)/(-1-λ))^2-(-1-λ)^2/(-1-λ)
当-1-λ>0时,只要〔-1,1〕在函数对称轴的右边,则是增函数,也就是说-(1-λ)/(-1-λ)<=-1
-1+λ<=1+λ,所以λ<-1时全成立
当-1-λ<0时,只要〔-1,1〕在函数对称轴的左边,则是增函数,也就是说-(1-λ)/(-1-λ)>=1
-1+λ<=-1-λ,所以λ=<0时全成立-1<λ=<0
当-1-λ=0时,h(x)=4x,是增函数
综上,在λ=<0时是增函数
2.-x^2+2x≥x^2+2x-|x-1|
2x^2-|x-1|<=0
当x>=1,
2x^2-x+1<=0
是空集
当x<1,
2x^2+x-1<=0
-1
<=x<=1/2
所以解是
-1
<=x<=1/2
3.
h(x)=g(x)-λf(x)=-x^2+2x-λ(x^2+2x)=(-1-λ)x^2+(2-2λ)x=(-1-λ)(x+(1-λ)/(-1-λ))^2-(-1-λ)^2/(-1-λ)
当-1-λ>0时,只要〔-1,1〕在函数对称轴的右边,则是增函数,也就是说-(1-λ)/(-1-λ)<=-1
-1+λ<=1+λ,所以λ<-1时全成立
当-1-λ<0时,只要〔-1,1〕在函数对称轴的左边,则是增函数,也就是说-(1-λ)/(-1-λ)>=1
-1+λ<=-1-λ,所以λ=<0时全成立-1<λ=<0
当-1-λ=0时,h(x)=4x,是增函数
综上,在λ=<0时是增函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)和g(x)的图像关于原点对称,且f(x)=x^2+2x.
设f(x)图像上的点为:(x,y),所以(-x,-y)在g(x)的图像上
所以g(x)=-x^2+2x
(2)
g(x)≥f(x)-|x-1|
-x^2+2x》x^2+2x-|x-1|
即|x-1|》2x^2,
=>
x-1》2x^2,或者1-x》2x^2
=>
-1《x《1/2
(3)
h(x)=-x^2+2x-n(x^2+2x)+1
=(n-1)x^2+(2-2n)x+1
在[-1,1]上位增函数
n不等于-1时,
h(x)对称轴为x=-(n-1)/(n+1)
n>-1,-(n-1)/(n+1)》1,
n《0,-1<n《0
n<-1,-(n-1)/(n+1)《1,n<-1
所以:n《0
设f(x)图像上的点为:(x,y),所以(-x,-y)在g(x)的图像上
所以g(x)=-x^2+2x
(2)
g(x)≥f(x)-|x-1|
-x^2+2x》x^2+2x-|x-1|
即|x-1|》2x^2,
=>
x-1》2x^2,或者1-x》2x^2
=>
-1《x《1/2
(3)
h(x)=-x^2+2x-n(x^2+2x)+1
=(n-1)x^2+(2-2n)x+1
在[-1,1]上位增函数
n不等于-1时,
h(x)对称轴为x=-(n-1)/(n+1)
n>-1,-(n-1)/(n+1)》1,
n《0,-1<n《0
n<-1,-(n-1)/(n+1)《1,n<-1
所以:n《0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)
g(x)=-(x^2)+2x
2)
-1≤x≤(1/2)
3)
h(x)=-(1+n)x^2
+2(1-n)x
+1
因为
h(x)=g(x)-nf(x)+1在[-1,1]上位增函数
所以
n不等于-1时,
h(x)对称轴为x=-(n-1)/(n+1)
n>-1,-(n-1)/(n+1)》1,
n《0,-1<n《0
n<-1,-(n-1)/(n+1)《1,n<-1
所以:n《0
g(x)=-(x^2)+2x
2)
-1≤x≤(1/2)
3)
h(x)=-(1+n)x^2
+2(1-n)x
+1
因为
h(x)=g(x)-nf(x)+1在[-1,1]上位增函数
所以
n不等于-1时,
h(x)对称轴为x=-(n-1)/(n+1)
n>-1,-(n-1)/(n+1)》1,
n《0,-1<n《0
n<-1,-(n-1)/(n+1)《1,n<-1
所以:n《0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.
g(x)=2x-x^2
2.
-1/2<=x<=1
3.
h(x)=2x-x^2-nx^2-2nx+1=-(n+1)x^2-2(n-1)x+1
n=-1,h(x)=4x+1,可以
n不等于-1,有:h(x)对称轴为x=-(n-1)/(n+1)
n>-1,-(n-1)/(n+1)>=1,n<=0,-1<n<=0
n<-1,-(n-1)/(n+1)<=-1,n<-1
故:n<=0
g(x)=2x-x^2
2.
-1/2<=x<=1
3.
h(x)=2x-x^2-nx^2-2nx+1=-(n+1)x^2-2(n-1)x+1
n=-1,h(x)=4x+1,可以
n不等于-1,有:h(x)对称轴为x=-(n-1)/(n+1)
n>-1,-(n-1)/(n+1)>=1,n<=0,-1<n<=0
n<-1,-(n-1)/(n+1)<=-1,n<-1
故:n<=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询