用0、1、2、3、4这五个数字组成没有重复数字的三位数,其中偶数有多少个?(用数字表示)
1个回答
展开全部
52个
要得到偶数,那么个位可以为0,2,4三种。
首先以0为个位,那么百位可以有1,2,3,4,5五种选择,需要不重复的数字,那么十位就为剩下的四种选择,这种方法就有5*4=20个;
以2为个位,那么百位只有1,3,4,5四种选择,同理,但是十位可以有0,所以十位有四种选择,这种方法有4*4=16个;
最后以4为个位,百位可以有1,2,3,5四种选择,则十位可以有0,十位也有四种选择,这种方法有4*4=16个;
最后把这些方法加起来即为最终答案:20
16
16=52
所以这样的偶数有52个
要得到偶数,那么个位可以为0,2,4三种。
首先以0为个位,那么百位可以有1,2,3,4,5五种选择,需要不重复的数字,那么十位就为剩下的四种选择,这种方法就有5*4=20个;
以2为个位,那么百位只有1,3,4,5四种选择,同理,但是十位可以有0,所以十位有四种选择,这种方法有4*4=16个;
最后以4为个位,百位可以有1,2,3,5四种选择,则十位可以有0,十位也有四种选择,这种方法有4*4=16个;
最后把这些方法加起来即为最终答案:20
16
16=52
所以这样的偶数有52个
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询