f(x)的定义域是[0,1]求f(arctanx)的定义域
[0,tan1]
这一题要先明白反函数定义,比如y=sinx的反函数为x=arcsiny,图像与y轴对称,习惯记作y=arcsinx,而题中求arctanx的定义域相当于求tanx的值域,而x为[0,1],则该函数定义域为[0,tan1]。
定义域是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。含义是指自变量 x的取值范围。
扩展资料
求函数的定义域需要从这几个方面入手:
1、分母不为零
2、偶次根式的被开方数非负。
3、对数中的真数部分大于0。
4、指数、对数的底数大于0,且不等于1
5、y=tanx中x≠kπ+π/2,
6、y=cotx中x≠kπ。
已知函数解析式时:只需要使得函数表达式中的所有式子有意义
1、表达式中出现分式时:分母一定满足不为0;
2、 表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数);
3、表达式中出现指数时:当指数为0时,底数一定不能为0;
4、根号与分式结合,根号开偶次方在分母上时:根号下大于0;
5、表达式中出现指数函数形式时:底数和指数都含有x,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)。