已知二次函数y=f(x)在x=(t+2/2)处取得最小值为(t^2)/4(t>0),f(1)=0,则y=f(x)的表达式是?要详细过程

 我来答
剑宛秋关霞
2020-03-28
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
已知二次函数y=f(x)在x=(t+2/2)处取得最小值为(t^2)/4(t>0),f(1)=0,则y=f(x)的表达式是?
1)求y=f(x)的表达式
2)若任意实数x都满足等式f(x)g(x)+mx+n=x^3,g(x)为多项式,试用t表示m和n
求详解!
解:
二次函数y=f(x)在x=(t+2)/2处取得最小值-t^2/4
f(x)=a[x-(t+2)/2]^2-t^2/4
f(1)=a[1-(t+2)/2]^2-t^/4=(a-1)t^2/4=0
t≠0,a=1
f(x)=x^2-(t+2)x+(t+1)=[x-(t+1)](x-1)
f(x)g(x)=x^3-mx-n
f(1)g(1)=1-m-n=0,n=1-m
f(t+1)g(t+1)=(t+1)^3-m(t+1)-n=(t+1)^3-m(t+1)-1+m=0
m=t^2+3t+3
n=-t^2-3t-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式