1.设随机变量X,Y相互独立,且都服从正态分布N(0,σ^2),求Z=(X^2+Y^2)^0.5的概率密度,期望和方差。
2个回答
展开全部
用分布函数法求概率密度
F(z)=P(Z<=z)=P{(X^2+Y^2)^0.5<=z}
当z<0时,F(z)=0
当z>=0时,F(z)=P{X^2+Y^2<=z^2}
F(z)=P{X^2+Y^2<=z^2}=(2πσ^2)^(-1)∫∫e^[-(x^2+y^2)/(2σ^2)]dxdy,积分区域是X^2+Y^2<=z^2
积分得:F(z)=1-e^[-z^2/(2σ^2)]
求导得Z的概率密度:f(z)=(z/σ^2)*e^[-z^2/(2σ^2)],z>=0;f(z)=0,z<0
期望E(Z)=∫zf(z)dz=∫z(z/σ^2)*e^[-z^2/(2σ^2)]dz=σ*√(π/2),积分区域是z>0
E(Z^2)=∫z^2f(z)dz=∫z^2(z/σ^2)*e^[-z^2/(2σ^2)]dz=2σ^2,积分区域是z>0
方差D(Z)=E(Z^2)-[E(Z)]^2=[(4-π)/2]*σ^2
F(z)=P(Z<=z)=P{(X^2+Y^2)^0.5<=z}
当z<0时,F(z)=0
当z>=0时,F(z)=P{X^2+Y^2<=z^2}
F(z)=P{X^2+Y^2<=z^2}=(2πσ^2)^(-1)∫∫e^[-(x^2+y^2)/(2σ^2)]dxdy,积分区域是X^2+Y^2<=z^2
积分得:F(z)=1-e^[-z^2/(2σ^2)]
求导得Z的概率密度:f(z)=(z/σ^2)*e^[-z^2/(2σ^2)],z>=0;f(z)=0,z<0
期望E(Z)=∫zf(z)dz=∫z(z/σ^2)*e^[-z^2/(2σ^2)]dz=σ*√(π/2),积分区域是z>0
E(Z^2)=∫z^2f(z)dz=∫z^2(z/σ^2)*e^[-z^2/(2σ^2)]dz=2σ^2,积分区域是z>0
方差D(Z)=E(Z^2)-[E(Z)]^2=[(4-π)/2]*σ^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询