不等式方程怎么解
1个回答
展开全部
最基本的是不等式的性质:
不等式性质1
不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:
如果a>b,那么a+m>b+m,a-m>b-m;
如果a<b,那么a+m<b+m,a-m<b-m。
不等式性质2
不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:
如果a>b,且m>0,那么am>bm;
如果a<b,且m>0,那么am<bm。
不等式性质3
不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:
如果a>b,且m<0,那么am<bm;
如果a<b,且m<0,那么am>bm。
不等式性质1
不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:
如果a>b,那么a+m>b+m,a-m>b-m;
如果a<b,那么a+m<b+m,a-m<b-m。
不等式性质2
不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:
如果a>b,且m>0,那么am>bm;
如果a<b,且m>0,那么am<bm。
不等式性质3
不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:
如果a>b,且m<0,那么am<bm;
如果a<b,且m<0,那么am>bm。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询