口袋中装有(2n–1)只白球,2n个黑球。一次取出n个球,发现都是同一颜色的球,求它们都是黑球的概率?
2个回答
展开全部
条件概率
取出是黑球的概率=C(n,2n)/C(n,4n-1)
(1)
取出是白球的概率=C(n,2n-1)/C(n,4n-1)
取出是同一颜色的概率=C(n,2n)/C(n,4n-1)+C(n,2n-1)/C(n,4n-1)
(2)
取出是同一种颜色,那么为黑球的概率(1)/(2)=C(n,2n)/[C(n,2n)+C(n,2n-1)]=1/[1+C(n,2n-1)/C(n,2n)]=1/{1+[P(n,2n-1)/n!]/[P(n,2n)/n!]}
=1/[1+P(n,2n-1)/P(n,2n)]=1/{1+[(2n-1)!/(n-1)!]/[(2n)!/n!]}=1/[1+n/2n]
=1/[1+1/2]=2/3
取出是黑球的概率=C(n,2n)/C(n,4n-1)
(1)
取出是白球的概率=C(n,2n-1)/C(n,4n-1)
取出是同一颜色的概率=C(n,2n)/C(n,4n-1)+C(n,2n-1)/C(n,4n-1)
(2)
取出是同一种颜色,那么为黑球的概率(1)/(2)=C(n,2n)/[C(n,2n)+C(n,2n-1)]=1/[1+C(n,2n-1)/C(n,2n)]=1/{1+[P(n,2n-1)/n!]/[P(n,2n)/n!]}
=1/[1+P(n,2n-1)/P(n,2n)]=1/{1+[(2n-1)!/(n-1)!]/[(2n)!/n!]}=1/[1+n/2n]
=1/[1+1/2]=2/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询