已知数列{An}的通项公式为An=(2n+1)*2^n-1 求Sn
1个回答
展开全部
an=(2n+1)*2^(n-1)
sn=(2+1)+(2*2+1)*2^1+(2*3+1)*2^2+……+(2n-1)*2^(n-2)+(2n+1)*2^(n-1)
2sn=(2+1)*2^1+(2*2+1)*2^2+(2*3+1)*2^3+……+(2n-3)2^(n-2)+(2n-1)*2^(n-1)+(2n+1)*2^n
相减:
-sn=1+2+2*2^1+2*2^2+2*2^3+……+2*2^(n-2)+2*2^(n-1)-(2n+1)*2^n
=1+2+2^2+2^3+2^4+……+2^(n-1)+2^n-(2n+1)*2^n
=1+2+2^2+2^3+2^4+……+2^(n-1)-2n*2^n
=(2^n-1)/(2-1)-2n*2^n
=-1+(1-2n)*2^n
sn=1+(2n-1)*2^n
sn=(2+1)+(2*2+1)*2^1+(2*3+1)*2^2+……+(2n-1)*2^(n-2)+(2n+1)*2^(n-1)
2sn=(2+1)*2^1+(2*2+1)*2^2+(2*3+1)*2^3+……+(2n-3)2^(n-2)+(2n-1)*2^(n-1)+(2n+1)*2^n
相减:
-sn=1+2+2*2^1+2*2^2+2*2^3+……+2*2^(n-2)+2*2^(n-1)-(2n+1)*2^n
=1+2+2^2+2^3+2^4+……+2^(n-1)+2^n-(2n+1)*2^n
=1+2+2^2+2^3+2^4+……+2^(n-1)-2n*2^n
=(2^n-1)/(2-1)-2n*2^n
=-1+(1-2n)*2^n
sn=1+(2n-1)*2^n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询