高一数学必修一的一个问题
展开全部
1,令a=b,于是有f(2a)+f(0)=2f(a)f(a)
令b=-a,于是有f(0)+f(2a)=2f(a)f(-a)
比较上面两式,我们可以得到2f(a)f(a)=2f(a)f(-a)
于是有f(a)=0或f(a)=f(-a)
当f(a)=0时,由于a是任意的,所以有f(0)=0这与题意不符,故有f(a)不等于0
故只有f(a)=f(-a)
所以函数是偶函数。
2,令a=b=0我们可以得到2f(0)=2f(0)f(0),于是就有了f(0)=1.
f(x+T)=f(x)表明函数是周期为T的周期函数。
所以有f(a+T)=f(a),f(a-T)=f(a)
令b=T,得到f(a+T)+f(a-T)=2f(a)f(T)
于是有2f(a)=2f(a)f(T)
所以有f(T)=1
再令a=b=m代入得到f(2m)+f(0)=2f(m)^2=0
所以有f(2m)=-1
令a=b=2m代入得到f(4m)+f(0)=2f(2m)^2=2
所以有f(4m)=1.
同理可以有f(8m)=1,f(16m)=1....
对于f(4m*2^k)=1[k=0,1,2,3.....]
所以有T=4m*2^k[k=0,1,2,3......]
令b=-a,于是有f(0)+f(2a)=2f(a)f(-a)
比较上面两式,我们可以得到2f(a)f(a)=2f(a)f(-a)
于是有f(a)=0或f(a)=f(-a)
当f(a)=0时,由于a是任意的,所以有f(0)=0这与题意不符,故有f(a)不等于0
故只有f(a)=f(-a)
所以函数是偶函数。
2,令a=b=0我们可以得到2f(0)=2f(0)f(0),于是就有了f(0)=1.
f(x+T)=f(x)表明函数是周期为T的周期函数。
所以有f(a+T)=f(a),f(a-T)=f(a)
令b=T,得到f(a+T)+f(a-T)=2f(a)f(T)
于是有2f(a)=2f(a)f(T)
所以有f(T)=1
再令a=b=m代入得到f(2m)+f(0)=2f(m)^2=0
所以有f(2m)=-1
令a=b=2m代入得到f(4m)+f(0)=2f(2m)^2=2
所以有f(4m)=1.
同理可以有f(8m)=1,f(16m)=1....
对于f(4m*2^k)=1[k=0,1,2,3.....]
所以有T=4m*2^k[k=0,1,2,3......]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询