如图,已知AE平分∠BAC,BE⊥AE于E
展开全部
如图,已知AE平分∠BAC,BE⊥AE,垂足为E,ED∥AC,∠BAE=36°,那么∠BED=126度.
解 析 已知AE平分∠BAC,ED∥AC,根据两直线平行同旁内角互补,可求得∠DEA的度数,再由三角形外角和为360°求得∠BED度数.
∵AE平分∠BAC
∴∠BAE=∠CAE=36°
∵ED∥AC
∴∠CAE+∠DEA=180°
∴∠DEA=180°-36°=144°
∵∠AED+∠AEB+∠BED=360°
∴∠BED=360°-144°-90°=126°.
故答案为126°.
解 析 已知AE平分∠BAC,ED∥AC,根据两直线平行同旁内角互补,可求得∠DEA的度数,再由三角形外角和为360°求得∠BED度数.
∵AE平分∠BAC
∴∠BAE=∠CAE=36°
∵ED∥AC
∴∠CAE+∠DEA=180°
∴∠DEA=180°-36°=144°
∵∠AED+∠AEB+∠BED=360°
∴∠BED=360°-144°-90°=126°.
故答案为126°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询