数学高手来呀~高中数列问题…
设Sn为数列{an}的前n项和,若S2n/Sn(n属于正整数)是非零常数,则该数列为“和等比数列”。………………若数列{Cn}是首项为c1,公差为d(d不等于0)的等差数...
设Sn为数列{an}的前n项和,若S2n/Sn(n属于正整数)是非零常数,则该数列为“和等比数列”。………………若数列{Cn}是首项为c1,公差为d(d不等于0)的等差数列,且数列{Cn}起“和等比数列”,试探究d与c1之间的等量关系。
展开
1个回答
展开全部
其实这是一个恒成立的问题
首先设k为那个比值
k=S2n/Sn=[2nc1+n(2n-1)d]/[nc1+n(n-1)d/2]
再对这个式子进行化简和合并
knc1+n(n-1)dk/2=2nc1+n(2n-1)d
kc1+(n-1)dk/2=2c1+(2n-1)d
将括号打开
并进行合并
kc1-dk/2-2c1+d=nd(2-k/2)
左边分解因式
(c1-d/2)(k-2)=nd(2-k/2)
因为这个式子只有n是变量
而这个式子恒成立
所以
必然是0=0的情况
然后可以讨论
右边d不等于0,所以2-k/2=0,k=4
左边k-2≠0
所以c1-d/2=0
所以d=2c1
首先设k为那个比值
k=S2n/Sn=[2nc1+n(2n-1)d]/[nc1+n(n-1)d/2]
再对这个式子进行化简和合并
knc1+n(n-1)dk/2=2nc1+n(2n-1)d
kc1+(n-1)dk/2=2c1+(2n-1)d
将括号打开
并进行合并
kc1-dk/2-2c1+d=nd(2-k/2)
左边分解因式
(c1-d/2)(k-2)=nd(2-k/2)
因为这个式子只有n是变量
而这个式子恒成立
所以
必然是0=0的情况
然后可以讨论
右边d不等于0,所以2-k/2=0,k=4
左边k-2≠0
所以c1-d/2=0
所以d=2c1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询