已知函数f(x)=lnx+(1-x)/ax,其中a为大于零的常数.(1)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围
2个回答
2012-03-22
展开全部
f(x) = lnx + (1 - x)/(ax)
f'(x) = 1/x + [(ax)(-1) - (1 - x)(a)]/(ax)²
= 1/x - a/(ax)²
= 1/x - 1/(ax²)
∵f(x)在[1,+∞)递增,
∴f'(1) > 0
1 - 1/a > 0
a(a - 1) > 0
a < 0 或 a > 1,但a > 0
所以a的取值范围是(1,+∞)
============================================================================
函数f(x)在〔1,+∞)上可导且为增函数,
故f’(x)=-1/ax^2+1/x =(ax-1)/ax^2
令f’(x)>0 x>1/a 1/a<Xmin=1 得到a>1
f'(x) = 1/x + [(ax)(-1) - (1 - x)(a)]/(ax)²
= 1/x - a/(ax)²
= 1/x - 1/(ax²)
∵f(x)在[1,+∞)递增,
∴f'(1) > 0
1 - 1/a > 0
a(a - 1) > 0
a < 0 或 a > 1,但a > 0
所以a的取值范围是(1,+∞)
============================================================================
函数f(x)在〔1,+∞)上可导且为增函数,
故f’(x)=-1/ax^2+1/x =(ax-1)/ax^2
令f’(x)>0 x>1/a 1/a<Xmin=1 得到a>1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询