2个回答
展开全部
f(a) = ∫(a~2a) dx/√(1 + x³)
f'(a) = 2/√(1 + 8a³) - 1/√(1 + a³)
2/√(1 + 8a³) - 1/√(1 + a³) = 0
=> a = [3^(1/3)]/[2^(2/3)]
f''(a) = (3/2)[1/(1 + x³)^(3/2) - 16/(1 + 8x³)^(3/2)]x²
f''{[3^(1/3)]/[2^(2/3)]} = - [3 • 6^(2/3)]/(7√7) < 0,取得极大值
於是当a = [ 3^(1/3) ] / [ 2^(2/3) ] 时f(a)最大
f'(a) = 2/√(1 + 8a³) - 1/√(1 + a³)
2/√(1 + 8a³) - 1/√(1 + a³) = 0
=> a = [3^(1/3)]/[2^(2/3)]
f''(a) = (3/2)[1/(1 + x³)^(3/2) - 16/(1 + 8x³)^(3/2)]x²
f''{[3^(1/3)]/[2^(2/3)]} = - [3 • 6^(2/3)]/(7√7) < 0,取得极大值
於是当a = [ 3^(1/3) ] / [ 2^(2/3) ] 时f(a)最大
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询