设1+xy=e∧x+y,求dy 10
1个回答
展开全部
1+xy=e^x+y 两边对x求导:
y+xy'=e^x+y'
y'(x-1)=e^x-y
y'=(e^x-y)/(x-1)
dy=y'dx=[(e^x-y)/(x-1)]dx
____________________________
1+xy=e^(x+y) 两边对x求导:
y+xy'=e^(x+y)·(1+y')
y'[x-e^(x+y)]=e^(x+y)-y
y'=[e^(x+y)-y]/[x-e^(x+y)]
dy=y'dx=[e^(x+y)-y]dx/[x-e^(x+y)]
y+xy'=e^x+y'
y'(x-1)=e^x-y
y'=(e^x-y)/(x-1)
dy=y'dx=[(e^x-y)/(x-1)]dx
____________________________
1+xy=e^(x+y) 两边对x求导:
y+xy'=e^(x+y)·(1+y')
y'[x-e^(x+y)]=e^(x+y)-y
y'=[e^(x+y)-y]/[x-e^(x+y)]
dy=y'dx=[e^(x+y)-y]dx/[x-e^(x+y)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询