已知椭圆G:x²/12+y²/4=1,斜率为1的直线l与椭圆G交于A、B两点,以AB为底边作等腰三角形,

顶点为P(-3,2),求△PAB的面积... 顶点为P(-3,2),求△PAB的面积 展开
zxjnq58
2012-03-23 · TA获得超过1673个赞
知道小有建树答主
回答量:773
采纳率:100%
帮助的人:988万
展开全部
解:设LAB:y=x+b,
代入x2/12+y2/4=1,得4x2+6bx+3b2-12=0,
根据韦达定理XA+XB=-3b/2,XAXB=3b2-12/4,
∴yA+yB=b/2,
设M为AB的中点,则M(-3b/4,b/4),AB的中垂线K=-1,
L垂:x+y+b/2=0,将P代入,得b=2,
∴LAB:x-y+2=0,根据弦长公式可得AB=3√2,d=3/√2,
∴S△PAB=1/2*3√2*3/√2=9/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式