求问这两题怎么写 高数
展开全部
罗比达法则对分子分母分别求导
追问
具体过程呢
追答
求导还要人给过程啊
分子dlntanx/dx = dtanx/dx / tanx = (secx)^2/tanx
分母dsecx/dx = secx tanx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(5)
y=π/2-x
lim(x->π/2) ( tanx )^(2cosx)
=lim(y->0) ( coty )^(2siny)
=lim(y->0) e^[2siny.(lncoty)]
=lim(y->0) e^[2(lncoty)/(cscy)] (∞/∞ 分子分母分别求导)
=lim(y->0) e^{[-2(cscy)^2/coty]/(-cscy.coty)]}
=lim(y->0) e^[2(cscy)/(coty)^2]
=lim(y->0) e^[2(siny)/(cosy)^2]
=e^0
=1
(7)
x->0
cosx = 1- (1/2)x^2 +o(x^2)
ln(1+x)= x-(1/2)x^2+o(x^2)
cosx.ln(1+x)
=[ 1- (1/2)x^2 +o(x^2)].[x-(1/2)x^2+o(x^2)]
=x - (1/2)x^2 +o(x^2)
cosx.ln(1+x)-x =-(1/2)x^2 +o(x^2)
lim(x->0) [ cosx/x - 1/ln(1+x)]
=lim(x->0) [ cosx.ln(1+x) - x]/[ xln(1+x)]
=lim(x->0) [ cosx.ln(1+x) - x]/x^2
=lim(x->0) [ -(1/2)x^2]/x^2
=-1/2
y=π/2-x
lim(x->π/2) ( tanx )^(2cosx)
=lim(y->0) ( coty )^(2siny)
=lim(y->0) e^[2siny.(lncoty)]
=lim(y->0) e^[2(lncoty)/(cscy)] (∞/∞ 分子分母分别求导)
=lim(y->0) e^{[-2(cscy)^2/coty]/(-cscy.coty)]}
=lim(y->0) e^[2(cscy)/(coty)^2]
=lim(y->0) e^[2(siny)/(cosy)^2]
=e^0
=1
(7)
x->0
cosx = 1- (1/2)x^2 +o(x^2)
ln(1+x)= x-(1/2)x^2+o(x^2)
cosx.ln(1+x)
=[ 1- (1/2)x^2 +o(x^2)].[x-(1/2)x^2+o(x^2)]
=x - (1/2)x^2 +o(x^2)
cosx.ln(1+x)-x =-(1/2)x^2 +o(x^2)
lim(x->0) [ cosx/x - 1/ln(1+x)]
=lim(x->0) [ cosx.ln(1+x) - x]/[ xln(1+x)]
=lim(x->0) [ cosx.ln(1+x) - x]/x^2
=lim(x->0) [ -(1/2)x^2]/x^2
=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询