如图,在△ABC中,∠BAC=90°,D为斜边BC的中点,E、F分别为边AB、AC上的点,且ED⊥DF,若CF=8,BE=6,求EF的长
2个回答
展开全部
连接QE,凯激蚂
∵D是Rt△ABC斜边BC上的中点铅裂,
∴CD=BD.
又∵FD=DQ,∠FDC=∠QDB,
∴△FDC≌盯埋△QDB.
∴∠DBQ=∠C.
∴AC∥BQ.
又∵∠BAC=90°,
∴∠ABQ=90°.
∴AB⊥BQ.
∵∠EBQ=90°,
∴BE2+BQ2=QE2
∵ED⊥DF,
又∵△BQD≌△CFD,
∴DQ=DF.
∴ED是QF的垂直平分线.
∴QE=EF.
∵△DFC≌△DQB,
∴CF=BQ.
∴BE2+CF2=EF2.
∵D是Rt△ABC斜边BC上的中点铅裂,
∴CD=BD.
又∵FD=DQ,∠FDC=∠QDB,
∴△FDC≌盯埋△QDB.
∴∠DBQ=∠C.
∴AC∥BQ.
又∵∠BAC=90°,
∴∠ABQ=90°.
∴AB⊥BQ.
∵∠EBQ=90°,
∴BE2+BQ2=QE2
∵ED⊥DF,
又∵△BQD≌△CFD,
∴DQ=DF.
∴ED是QF的垂直平分线.
∴QE=EF.
∵△DFC≌△DQB,
∴CF=BQ.
∴BE2+CF2=EF2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询