收敛函数的定义是什么?

 我来答
小王爱生活zz
高能答主

2021-11-14 · 科技让生活更精彩!!
小王爱生活zz
采纳数:1 获赞数:888

向TA提问 私信TA
展开全部

收敛函数的定义:收敛函数就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性,也就是说存在极限的函数就是收敛函数。

函数收敛和有界的关系,有界不一定收敛。

函数收敛则:在x0处收敛,则必存在x0的一个去心领域,函数在这个去心领域内有界。

当x趋于无穷时收敛,以正无穷为例,则必存在M,使函数在[M,+∞)上有界。

一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。

性质:无穷小与有界函数的乘积仍为无穷小。

收敛和收敛性这两个词(在外语中通常是同一个词)有时泛指函数或数列是否有极限的性质,或者按哪一种意义(什么极限过程)有极限。

在这个意义下,数学分析中所讨论的收敛性的不同意义(不同类型的极限过程)大致有:对数列(点列)只讨论当其项序号趋于无穷的收敛性。

对一元和多元函数最基本的有自变量趋于定值(定点)的和自变量趋于无穷的这两类收敛性;对多元函数还有沿特殊路径的和累次极限意义下的收敛性;对函数列(级数)有逐点收敛和一致收敛

参考-百度百科函数收敛的定义是什么?

公泰宁9s
2022-10-22
知道答主
回答量:2
采纳率:0%
帮助的人:538
展开全部
数列存在一个极限A,那么就称数列收敛于A
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式