收敛函数的定义是什么?
收敛函数的定义:收敛函数就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性,也就是说存在极限的函数就是收敛函数。
函数收敛和有界的关系,有界不一定收敛。
函数收敛则:在x0处收敛,则必存在x0的一个去心领域,函数在这个去心领域内有界。
当x趋于无穷时收敛,以正无穷为例,则必存在M,使函数在[M,+∞)上有界。
一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。
性质:无穷小与有界函数的乘积仍为无穷小。
收敛和收敛性这两个词(在外语中通常是同一个词)有时泛指函数或数列是否有极限的性质,或者按哪一种意义(什么极限过程)有极限。
在这个意义下,数学分析中所讨论的收敛性的不同意义(不同类型的极限过程)大致有:对数列(点列)只讨论当其项序号趋于无穷的收敛性。
对一元和多元函数最基本的有自变量趋于定值(定点)的和自变量趋于无穷的这两类收敛性;对多元函数还有沿特殊路径的和累次极限意义下的收敛性;对函数列(级数)有逐点收敛和一致收敛。
参考-百度百科函数收敛的定义是什么?
2024-10-28 广告