高一数学知识点有哪些?

 我来答
小芳说旅游cxf
高能答主

2021-11-16 · 爱旅游的你 畅游走遍天下
小芳说旅游cxf
采纳数:8 获赞数:24168

向TA提问 私信TA
展开全部

高一数学知识点总结:

1、函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x)。

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

2、复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f的定义域由不等式a≤g(x)≤b解出即可;若已知f的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定。

数学

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精练早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态。

以上内容参考:百度百科--数学

勤谨且清丽丶不倒翁988
高能答主

2021-11-14 · 最想被夸「你懂的真多」
知道小有建树答主
回答量:967
采纳率:100%
帮助的人:16.4万
展开全部

高一数学知识点总结:

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x)。

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f的定义域由不等式a≤g(x)≤b解出即可;若已知f的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定。

3.函数图像

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
boss_zhang
2022-07-30 · 超过11用户采纳过TA的回答
知道答主
回答量:95
采纳率:83%
帮助的人:5.8万
展开全部

高一数学内容有《集合》、《函数》、《三角函数》、《向量》。

根据地区不同,有些地方是学习必修一和必修二,必修二的主要内容是《立体几何》,简单的《解析几何》。有些地方是学习必修一和必修四,必修四的主要内容是《三角函数》、《向量》。必修一是一定要学的,包括《集合》、《函数》。

高一数学怎么学

首先,在课堂教学中培养好的听课习惯是很重要的;其次,要提高数学能力,堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。

再次,要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高;最后,要沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式