数列极限的性质是什么?
1个回答
展开全部
数列极限的性质是如下:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列收敛(有极限),那么这个数列一定有界。
3、保不等式性:设数列{xn} 与{yn}均收敛。若存在正数N ,使得当n>N时有 xn≥yn。
极限思想的进一步发展是与微积分的建立紧密相联系的。16世纪的欧洲处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中遇到大量的问题。
开始人们只用初等数学的方法已无法解决,要求数学突破’只研究常量‘的传统范围,而寻找能够提供能描述和研究运动、变化过程的新工具,是促进’极限‘思维发展、建立微积分的社会背景。
起初牛顿和莱布尼茨以无穷小概念为基础建立了微积分,后来因遇到逻辑困难,所以在他们的晚期都不同程度地接受了极限思想。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询