显著性水平大于0.05是显著还是不显著?
大于0.05是不显著。
显著性大于0.05,证明在百分之五水平上是不显著的,可以看显著性是否小于0.1的如果小于0.1,证明在百分之十水平上显著,这个结果是可以用的,证明在百分之十水平上存在显著性影响。
如果显著性大于0.1证明在百分之十水平上不显著,证明这个结果不是显著性影响因素。
显著性,又称统计显著性(Statistical significance), 是指零假设为真的情况下拒绝零假设所要承担的风险水平,又叫概率水平,或者显著水平。
显著性的含义是指两个群体的态度之间的任何差异是由于系统因素而不是偶然因素的影响。我们假定控制了可能影响两个群体之间差异的所有其他因素,因此,余下的解释就是我们所推断的因素,而这个因素不能够100%保证,所以有一定的概率值,叫显著性水平(Significant level)。
显著性水平的判断:
显著性检验主要看t值和P值,在SPSS显示的结果中,significance是显著性的意思,sig即代表P值,以上结果P均大于0.05,表明不存在统计学差异。
显著性回答的问题是他们之间是否有关系;相关系数回答的问题是相关程度强弱。
2024-10-17 广告
p大于0.05表示差异性不显著。
通常情况下,实验结果达到0.05水平或0.01水平,才可以说数据之间具备了差异显著或是极显著。
在作结论时,应确实描述方向性(例如显著大于或显著小于)。sig值通常用P>0.05 表示差异性不显著;0.01<P<0.05 表示差异性显著;P<0.01表示差异性极显著。
显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。
显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。它是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。
显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。
它是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=0.05或α=0.01。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。
显著性水平代表的意义是在一次试验中小概率事物发生的可能性大小。
统计假设检验也称为显著性检验,即指样本统计量和假设的总体参数之间的显著性差异。显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。
显著性差异就是实际样本统计量的取值和假设的总体参数的差异超过了通常的偶然因素的作用范围,说明还有系统性的因素发生作用,因而就可以否定某种条件不起作用的假设。
假设检验时提出的假设称为原假设或无效假设,就是假定样本统计量与总体参数的差异都是由随机因素引起,不存在条件变动因素。
假设检验运用了小概率原理,事先确定的作为判断的界限,即允许的小概率的标准,称为显著性水平。
如果根据命题的原假设所计算出来的概率小于这个标准,就拒绝原假设;大于这个标准则不拒绝原假设。这样显著性水平把概率分布分为两个区间:拒绝区间,不拒绝区间。
显著性水平不是一个固定不变的数字,其越大,则原假设被拒绝的可能性愈大,原假设为真而被否定的风险也愈大。显著性水平应根据所研究的的性质和我们对结论准确性所持的要求而定。
以上内容参考:百度百科-显著性水平
广告 您可能关注的内容 |