已知三角形ABC的面积为S,且S=根号3/4(b²+c²-a²)a=6,求△ABC周长的取值范围
1个回答
展开全部
S=√3/4(b²+c²-a²)
又:S=1/2bcsinA
∴√3/4(b²+c²-a²)=1/2bcsinA
又,根据
余弦定理
,b²+c²-a²=2bccosA
∴√3/2
bccosA
=1/2bcsinA
∴tan
=
√3
A
=
π/3
sinA
=
√3/2
B+C
=
π-A
=
2π/3
0<B,C<2π/3
C
=
2π/3
-
B
正弦定理
:
b/sinB
=
c/sinC
=
a/sinA
=
6/(√3/2)
=
4√3
b
=
4√3
sinB
,c
=4√3
sinC
a+b+c
=
6
+
4√3
sinB
+
4√3
sinC
=
6
+
4√3{sinB
+
sinC}
=
6
+
4√3{sinB
+
sin(2π/3-B)}
=
6
+
4√3{sinB
+
sin2π/3cosB-cos2π/3sinB}
=
6
+
4√3{sinB
+
√3/2cosB+1/2sinB}
=
6
+
4√3{3/2sinB
+
√3/2cosB}
=
6
+
12{√3/2sinB
+
1/2cosB}
=
6
+
12{sinBcosπ/6
+
cosBsinπ/6}
=
6
+
12sin(B+π/6)
0<B<2π/3
π/6<B+π/6<5π/6
当B+π/6
=
π/2时,有最大值6+12
=
18
当B+π/6趋近π/6或5π/6时,趋近最小值6+12*1/2
=
12
综上,周长
取值范围
:(12,18】
又:S=1/2bcsinA
∴√3/4(b²+c²-a²)=1/2bcsinA
又,根据
余弦定理
,b²+c²-a²=2bccosA
∴√3/2
bccosA
=1/2bcsinA
∴tan
=
√3
A
=
π/3
sinA
=
√3/2
B+C
=
π-A
=
2π/3
0<B,C<2π/3
C
=
2π/3
-
B
正弦定理
:
b/sinB
=
c/sinC
=
a/sinA
=
6/(√3/2)
=
4√3
b
=
4√3
sinB
,c
=4√3
sinC
a+b+c
=
6
+
4√3
sinB
+
4√3
sinC
=
6
+
4√3{sinB
+
sinC}
=
6
+
4√3{sinB
+
sin(2π/3-B)}
=
6
+
4√3{sinB
+
sin2π/3cosB-cos2π/3sinB}
=
6
+
4√3{sinB
+
√3/2cosB+1/2sinB}
=
6
+
4√3{3/2sinB
+
√3/2cosB}
=
6
+
12{√3/2sinB
+
1/2cosB}
=
6
+
12{sinBcosπ/6
+
cosBsinπ/6}
=
6
+
12sin(B+π/6)
0<B<2π/3
π/6<B+π/6<5π/6
当B+π/6
=
π/2时,有最大值6+12
=
18
当B+π/6趋近π/6或5π/6时,趋近最小值6+12*1/2
=
12
综上,周长
取值范围
:(12,18】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询