这些函数的二阶导数怎么求呀?
6个回答
展开全部
(1)y = x^2sin2x, y' = 2xsin2x +2x^2cos2x,
y'' = 2sin2x+4xcos2x+4xcos2x-4x^2sin2x = (2-4x^2)sin2x+8xcos2x
(2) y = e^x/x = x^(-1)e^x,
y' = -x^(-2)e^x+x^(-1)e^x = [-x^(-2)+x^(-1)]e^x,
y'' = [2x^(-3)-x^(-2)]e^x+[-x^(-2)+x^(-1)]e^x
= [2x^(-3)-2x^(-2)+x^(-1)]e^x = (2-2x+x^2)e^x/x^3
(3) y = x√(1+x^2),
y' = √(1+x^2) + x^2/√(1+x^2) = (1+2x^2)/√(1+x^2)
y'' = [4x√(1+x^2)-x(1+2x^2)/√(1+x^2)]/(1+x^2)
= (3x+2x^3)/(1+x^2)^(3/2)
y'' = 2sin2x+4xcos2x+4xcos2x-4x^2sin2x = (2-4x^2)sin2x+8xcos2x
(2) y = e^x/x = x^(-1)e^x,
y' = -x^(-2)e^x+x^(-1)e^x = [-x^(-2)+x^(-1)]e^x,
y'' = [2x^(-3)-x^(-2)]e^x+[-x^(-2)+x^(-1)]e^x
= [2x^(-3)-2x^(-2)+x^(-1)]e^x = (2-2x+x^2)e^x/x^3
(3) y = x√(1+x^2),
y' = √(1+x^2) + x^2/√(1+x^2) = (1+2x^2)/√(1+x^2)
y'' = [4x√(1+x^2)-x(1+2x^2)/√(1+x^2)]/(1+x^2)
= (3x+2x^3)/(1+x^2)^(3/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-11-09
展开全部
结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询