已知抛物线y=ax²+bx+c(a<0)经过点(-1,0)且满足y=ax²+bx+c以下结论正确的有
①a+b>0②a+c>0③-a+b+c>0④b²-2ac>5a²顺别解释一下什么叫满足y=ax²+bx+c。。。...
①a+b>0 ②a+c>0 ③-a+b+c>0 ④b²-2ac>5a²顺别解释一下什么叫满足y=ax²+bx+c。。。
展开
1个回答
展开全部
正确的个数有4个
理由:y=ax^2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0,
0=a-b+c=0,b=a+c,有4a+2(a+c)+c>0,
即2a+c>0,(∵a<0,则c>0,)
∵2a+c>0,∴a+c>0成立.
∵2a+c>0,c>-2a,
4a+2b+c>0,有4a+2b-2a>0成立,
即a+b>0成立.
∵b=a+c,
-a+b+c=-a+a+c+c=2c>0成立.
∵b=a+c,
b^2-2ac-5a^2=(a+c)^2-2ac-5a^2=c^2-4a^2,
又∵c>-2a>0,两边平方得,
c^2>4a^,
c^2-4a>0成立,即b^2-2ac-5a^2=(a+c)^2-2ac-5a^2=c^2-4a^2>0成立.
理由:y=ax^2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0,
0=a-b+c=0,b=a+c,有4a+2(a+c)+c>0,
即2a+c>0,(∵a<0,则c>0,)
∵2a+c>0,∴a+c>0成立.
∵2a+c>0,c>-2a,
4a+2b+c>0,有4a+2b-2a>0成立,
即a+b>0成立.
∵b=a+c,
-a+b+c=-a+a+c+c=2c>0成立.
∵b=a+c,
b^2-2ac-5a^2=(a+c)^2-2ac-5a^2=c^2-4a^2,
又∵c>-2a>0,两边平方得,
c^2>4a^,
c^2-4a>0成立,即b^2-2ac-5a^2=(a+c)^2-2ac-5a^2=c^2-4a^2>0成立.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询