不定积分xdx/根号下x^2+2x+2=

 我来答
机器1718
2022-06-13 · TA获得超过6795个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:157万
展开全部
∫[x/√(x^2+2x+2)]dx
=∫{[(x+1)-1]/√[(x+1)^2+1]}dx
=∫{(x+1)/√[(x+1)^2+1]}dx-∫{1/√[(x+1)^2+1]}dx
=(1/2)∫{1/√[(x+1)^2+1]}d[(x+1)^2+1]-∫{1/√[(x+1)^2+1]}dx
=∫d{√[(x+1)^2+1]}-∫{1/√[(x+1)^2+1]}dx
=√[(x+1)^2+1]-∫{1/√[(x+1)^2+1]}dx
=√(x^2+2x+2)-∫{1/√[(x+1)^2+1]}dx.
令x+1=tanu,则:dx=[1/(cosu)^2]du.
∴∫[x/√(x^2+2x+2)]dx
=√(x^2+2x+2)-∫{1/√[(tanu)^2+1]}[1/(cosu)^2]du
=√(x^2+2x+2)-∫[cosu/(cosu)^2]du
=√(x^2+2x+2)-∫{1/[(1+sinu)(1-sinu)]}d(sinu)
=√(x^2+2x+2)-(1/2)∫[1/(1+sinu)+1/(1-sinu)]d(sinu)
=√(x^2+2x+2)-(1/2)∫[1/(1+sinu)]d(sinu)-(1/2)∫[1/(1-sinu)]d(sinu)
=√(x^2+2x+2)-(1/2)ln(1+sinu)+(1/2)ln(1-sinu)+C
=√(x^2+2x+2)+(1/2)ln{1+tanu/√[(tanu)^2+1]}
 -(1/2)ln{1-tanu/√[(tanu)^2+1]}+C
=√(x^2+2x+2)+(1/2)ln{√[(tanu)^2+1]+tanu}
 -(1/2)ln{√[(tanu)^2+1]-tanu}+C
=√(x^2+2x+2)+(1/2)ln{√[(x+1)^2+1]+x+1}
 -(1/2)ln{√[(x+1)^2+1]-x-1}+C
=√(x^2+2x+2)+(1/2)ln{[√(x^2+2x+2)+x+1]^2}+C
=√(x^2+2x+2)+ln[√(x^2+2x+2)+x+1]+C.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式