当x趋近于正无穷时,求lim[x+根号(1+x^2)]^1/x的极限
1个回答
展开全部
∵lim(x->+∞)[ln(x+√(1+x^2))/x]
=lim(x->+∞)[1/√(1+x^2)] (∞/∞型极限,应用罗比达法则)
=0
∴lim(x->+∞)[(x+√(1+x^2))^(1/x)]
=lim(x->+∞){e^[ln(x+√(1+x^2))/x]}
=e^{lim(x->+∞)[ln(x+√(1+x^2))/x]}
=e^0
=1.
=lim(x->+∞)[1/√(1+x^2)] (∞/∞型极限,应用罗比达法则)
=0
∴lim(x->+∞)[(x+√(1+x^2))^(1/x)]
=lim(x->+∞){e^[ln(x+√(1+x^2))/x]}
=e^{lim(x->+∞)[ln(x+√(1+x^2))/x]}
=e^0
=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
TableDI
2024-07-18 广告
2024-07-18 广告
仅需3步!不写公式自动完成Excel vlookup表格匹配!Excel在线免,vlookup工具,点击16步自动完成表格匹配,无需手写公式,免费使用!...
点击进入详情页
本回答由TableDI提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询