算法时间复杂度
O(N!)、O(2 N)、O(N 2)、O(NlogN)、O(N)、O(logN)、O(1)...
代表: 最坏情况的用时
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
N 的 N 次方,^ 是上标的意思
如果 aˣ = N(a>0,且a≠1),那么数 x 叫做以 a 为底 N 的对数,记作 x=logaN,读作以 a 为底 N 的对数,其中 a 叫做对数的底数,N 叫做真数。
其中 x 是自变量,函数的定义域是(0,+∞),即 x>0。它实际上就是指数函数的反函数,可表示为 x= aʸ 。因此指数函数里对于 a 的规定,同样适用于对数函数。
描述算法复杂度时,常用o(1), o(n), o(logn), o(nlogn)表示对应算法的时间复杂度,是算法的时空复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍,线性增长,比如常见的:
时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如:
O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。比如:
当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。比如:
O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 比如:
代入 N 以后的数值,和耗时的关系, 10 ^ 8 => 秒级 ,最大的 N 分别是:
2023-08-15 广告