求∫√(a^2-x^2)dx
1个回答
展开全部
设x=asint,则dx=dasint=acostdt,可以得到:
a^2-x^2
=a^2-a^2sint^2
=a^2cost^2
∫√(a^2-x^2)dx
=∫acost*acostdt
=a^2∫cost^2dt
=a^2∫(cos2t+1)/2dt
=a^2/4∫(cos2t+1)d2t
=a^2/4*(sin2t+2t)
将x=asint代回,得:
∫√(a^2-x^2)dx=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2+C(C为常数)
扩展资料:
常用不定积分公式
1、∫k dx=kx+c
2、∫1/(1+x^2) dx=arctanx+c
3、∫1/√(1-x^2) dx=arcsinx+c
4、 ∫tanx dx=-In|cosx|+c
5 、∫cotx dx=In|sinx|+c
6、 ∫secx dx=In|secx+tanx|+c
7 、∫cscx dx=In|cscx-cotx|+c
8、∫1/√(x^2+a^2) dx=In(x+√(x^2+a^2))+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询