已知,a.b.c属于(0,1),求证:(1-a)b,(1-b)c,(1-c)a,不能同时大于1/4 20
2个回答
展开全部
证明:尘颤
假设(1-a)b,(1-b)c,(1-c)a都大于1/4
因0<a<1,0<b<1,0<c<1
所以有
√((1-a)b)>1/2,√((1-b)c)>1/2,√((1-c)a)>1/2
则
√((1-a)b)+√唯兄悄((1-b)c)+√((1-c)a) > 3/2 (*)
而由基本不等式:a,b∈R+, a+b≥2√(ab), 有
√((1-a)b)≤(1-a+b)/2,
√((1-b)c)≤(1-b+c)/2,
√((1-c)a)≤(1-c+a)/2
所以
√((1-a)b)+√((1-b)c)+√((1-c)a)≤3/2
这与已知的:√((1-a)b)+√((1-b)c)+√((1-c)a) >指渣 3/2 (*)矛盾
所以假设不成立,
故(1-a)b,(1-b)c,(1-c)a中至少有一个小于或等于1/4
证毕。
假设(1-a)b,(1-b)c,(1-c)a都大于1/4
因0<a<1,0<b<1,0<c<1
所以有
√((1-a)b)>1/2,√((1-b)c)>1/2,√((1-c)a)>1/2
则
√((1-a)b)+√唯兄悄((1-b)c)+√((1-c)a) > 3/2 (*)
而由基本不等式:a,b∈R+, a+b≥2√(ab), 有
√((1-a)b)≤(1-a+b)/2,
√((1-b)c)≤(1-b+c)/2,
√((1-c)a)≤(1-c+a)/2
所以
√((1-a)b)+√((1-b)c)+√((1-c)a)≤3/2
这与已知的:√((1-a)b)+√((1-b)c)+√((1-c)a) >指渣 3/2 (*)矛盾
所以假设不成立,
故(1-a)b,(1-b)c,(1-c)a中至少有一个小于或等于1/4
证毕。
展开全部
证明: 假设锋耐(1-a)b,(1-b)c,(1-c)a都大于1/4 因0<a<1,0<b<1,0<c<1 所以有 √((1-a)b)>1/2,√((1-b)c)>1/2,√((1-c)a)>耐敏1/2 则 √((1-a)b) √((1-b)c) √((1-c)a) > 3/银亩春2 (*) 而由基本不等式:a,b∈R , a b≥2√( ab), 有 √((1-a)b)≤(1-a b)/2, √((1-b)c)≤(1-b c)/2, √((1-c)a)≤(1-c a)/2 所以 √((1-a)b) √((1-b)c) √((1-c)a)≤3/2 这与已知的:√((1-a)b) √((1-b)c) √((1-c)a) > 3/2 (*)矛盾 所以假设不成立, 故(1-a)b,(1-b)c,(1-c)a中至少有一个小于或等于1 /4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询