已知数列{an}的首项a1=1/2,前n项和sn=n^2*an (n>=2)

1)求数列{an}的通项公式(只需告诉我(n^2-1)an=(n-1)^2*a(n-1)是怎么到这步的(n+1)an=(n-1)a(n-1)然后怎么得到这步an=1/[n... 1)求数列{an}的通项公式 (只需告诉我(n^2-1)an=(n-1)^2*a(n-1)是怎么到这步的(n+1)an=(n-1)a(n-1) 然后怎么得到这步an=1/[n(n+1)]
2)设b1=0 ,bn=(Sn-1)/sn (n>=2) Tn为数列{bn} 的前n和求Tn<n2/n+1

(越详细越好,我数学很差的,再此谢谢各位!)
展开
aityan98
2012-03-24 · TA获得超过3.2万个赞
知道大有可为答主
回答量:6326
采纳率:80%
帮助的人:4357万
展开全部
Sn=n^2*An
S(n-1)=(n-1)^2*A(n-1)
An=Sn-S(n-1)=n^2*An-(n-1)^2*A(n-1)
(1-n^2)An=-(n-1)^2*A(n-1)
An/A(n-1)=-(n-1)^2/(1-n^2)=(n-1)/(n+1)
An=(n-1)/(n+1)*A(n-1)
A1=1/2
A2=(1/3)*1/2
A3=(2/4*1/3)*1/2
=(1*2)/(3*4)*1/2
A4=(3/5*2/4*1/3)*1/2
=(1*2*3)/(3*4*5)*1/2
……
归纳出如下等式:
An=(1*2* …… *(n-1))/(3*4* …… *(n+1))*1/2
=1/(n*(n+1))
=1/n-1/(n+1)
(此推导思路中n>1)
把n=1,代入An=1/n-1/(n+1),发现得出A1=0.5,满足条件。
因此An=1/n-1/(n+1)

*******************************************************************************************
(n^2-1)an=(n-1)^2*a(n-1)是怎么到这步的(n+1)an=(n-1)a(n-1)
答:两边同时除以n-1

再到an=1/[n(n+1)]
答:用归纳法证明,见上

Sn=n/(n+1)

bn=(Sn-1)/sn<0
Tn<0<n2/n+1
貌似过于简单了
你确定bn是这样的么
更多追问追答
追问
我的题目没错啊
追答
如果是这样的话
就做完了

还有什么不明白的地方么
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式