三角形的边长a b c满足a的平方+b的平方+c的平方-2a-2b-2c+3=0
3个回答
展开全部
a^2+b^2+c^2-2a-2b-2c+3=0
即a^2-2a+1+b^2-2b+1+c^2-2c+1=0
(a+1)^2+(b+1)^2+(c+1)^2=0
所以(a+1)^2=0 (b+1)^2=0 (c+1)^2=0
a=b=c=1
即a^2-2a+1+b^2-2b+1+c^2-2c+1=0
(a+1)^2+(b+1)^2+(c+1)^2=0
所以(a+1)^2=0 (b+1)^2=0 (c+1)^2=0
a=b=c=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a^2+b^2+c^2-2a-2b-2c+3=0 得
(a-1)^2+(b-1)^2+(c-1)^2=0 ,
所以 a=1,b=1 ,c=1 ,
等边三角形。
(a-1)^2+(b-1)^2+(c-1)^2=0 ,
所以 a=1,b=1 ,c=1 ,
等边三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询