法线斜率是什么啊?
法线斜率是指垂直于曲线上一点的切线的直线的斜率,法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用α、β表示,则必有α*β=-1。法线可以用一元一次方程来表示,即法线方程。与导数有直接的转换关系。
用导数表示曲线y=f(x)在点M(x0,y0)处的切线方程为:y-f(x0)=f'(x0)(x0-y0)法线方程为:y-f(x0)=(-1/f'(x0))*(x-x0)。
以下是法线计算方式的相关介绍:
对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。用方程ax+by+cz=d表示的平面,向量(a,b,c)就是该平面的法向量。
如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。
以上资料参考百度百科——法线
2024-10-27 广告
法线斜率是是反映直线与X轴的夹角的量,法线也是直线,所以法线的斜率即表示法线的那条直线的斜率。
法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用α、β表示,则必有α*β=-1。法线可以用一元一次方程来表示,即法线方程。与导数有直接的转换关系。
法线与切线的斜率关系:
用导数表示曲线y=f(x)在点M(x0,y0)处的切线方程为:y-f(x0)=f'(x0)(x-x0)法线方程为:y-f(x0)=(-1/f'(x0))*(x-x0)。
通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
方程一定是等式,但是等式可以有其他的,比如上面举的1+1=2,100×100=10000,都是等式,显然等式的范围大一点。