证明:当函数y = f (x)在点 x.可微,则f ( x )一定在点x.可导.

 我来答
机器1718
2022-07-11 · TA获得超过6804个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:158万
展开全部
我来帮你吧.
若函数f(x)在x0可微
则由可微定义,对函数该变量△y,
有△y=A△x+o(△x)
其中A与△x无关,o(△x)是△x的高阶无穷小.
两边同除△x,然后同时取极限
有lim△y/△x=limA△x/△x+limo(△x)/△x
=A+0=A
所以极限存在.(lim△y/△x存在,这就是可导定义啊)
所以在x0除可导.
注:△x为自变量在x0除的该变量,且△x->0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式