展开全部
我只写思路,具体的内容你自己写吧:将f(x)=1/(1-x-x^2)=-1/(b-a)【1/(x-b)-1/(x-a)】
=-1/(b-a)【1/(1-x/a)*1/a-1/(1-x/b)*1/b】
=1/(b(b-a))【1/(1-x/b)】-1/(a(b-a))【1/(1-x/a)】,
其中a,b是方程1-x-x^2=0的两个根,然后再利用1/(1-x)=1+x+x^2+x^3+...代入即得
f(x)的Taylor展式,有了Taylor展式就得到了高阶导数。
=-1/(b-a)【1/(1-x/a)*1/a-1/(1-x/b)*1/b】
=1/(b(b-a))【1/(1-x/b)】-1/(a(b-a))【1/(1-x/a)】,
其中a,b是方程1-x-x^2=0的两个根,然后再利用1/(1-x)=1+x+x^2+x^3+...代入即得
f(x)的Taylor展式,有了Taylor展式就得到了高阶导数。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询