万能公式是如何推导的?
1个回答
展开全部
【释义】:应用公式sinα=[2tan(α/2)]/{1+[tan(α/2)]^2}
cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}
tanα=[2tan(α/2)]/{1-[tan(α/2)]^2}
将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换.
【推导】:(字符版)
sinα=2sin(α/2)cos(α/2)=[2sin(α/2)cos(α/2)]/[sin(α/2)^2+cos(α/2)^2]=[2tan(α/2)]/[1+(tanα/2)^2] cosα=[cos(α/2)^2-sin(α/2)^2]=[cos(α/2)^2-sin(α/2)^2]/[sin(a/2)^2+cos(a/2)^2]=[1-tan(α/2)^2]/[1+(tanα/2)^2] tanα=tan[2*(α/2)]=2tan(α/2)/[1-tan(α/2)^2]
cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}
tanα=[2tan(α/2)]/{1-[tan(α/2)]^2}
将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换.
【推导】:(字符版)
sinα=2sin(α/2)cos(α/2)=[2sin(α/2)cos(α/2)]/[sin(α/2)^2+cos(α/2)^2]=[2tan(α/2)]/[1+(tanα/2)^2] cosα=[cos(α/2)^2-sin(α/2)^2]=[cos(α/2)^2-sin(α/2)^2]/[sin(a/2)^2+cos(a/2)^2]=[1-tan(α/2)^2]/[1+(tanα/2)^2] tanα=tan[2*(α/2)]=2tan(α/2)/[1-tan(α/2)^2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询