如何判断矩阵是对角化的?
1个回答
展开全部
定理:n阶矩阵A相似于对角阵的充分必要条件是对于k重特征根λ有r(λE-A)=n-k。本题n=3,k=2,所以r(-E-A)=3-2=1。
如果r(λE-A)=1
那么λ对应的特征向量有3-1=2个
而另一个特征值
当然对应1个特征向量
于是有三个特征向量
所以A相似于对角矩阵
若n阶矩阵A有n个不同的特征值,则A必能相似于对角矩阵。
说明:当A的特征方程有重根时,就不一定有n个线性无关的特征向量,从而未必能对角化。
设M为元素取自交换体K中的n阶方阵,将M对角化,就是确定一个对角矩阵D及一个可逆方阵P,使M=PDP-1。设f为典范对应于M的Kn的自同态,将M对角化,就是确定Kn的一个基,使在该基中对应f的矩阵。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询