短除法是怎样计算最大公因数的?
3个回答
展开全部
短除法 求最大公因数的一种方法,也可用来求最小公倍数。
求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。
例如:求12与18的最大公因数。
12的因数有:1、2、3、4、6、12。
18的因数有:1、2、3、6、9、18。
12与18的公因数有:1、2、3、6。
12与18的最大公因数是6。
这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。
12=2×2×3
18=2×3×3
12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公因数2和3,而它们的乘积2×3=6,就是12与18的最大公因数。
采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公因数和最大公因数。如果把这两个数合在一起短除,则更容易。
从短除中不难看出,12与18都有公因数2和3,它们的乘积2×3=6就是12与18的最大公因数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公因数,就是这两个数的公共质因数的连乘积。
实际应用中,是把需要计算的两个或多个数放置在一起,进行短除,如附图1。
在计算多个数的最小公倍数时,对其中任意两个数存在的因数都要算出,其它无此因数的数则原样落下。最后把所有因数和最终剩下每两个都是互质关系(除1以外没有其他公因数)的数连乘即得到最小公倍数。如图2。
求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。
例如:求12与18的最大公因数。
12的因数有:1、2、3、4、6、12。
18的因数有:1、2、3、6、9、18。
12与18的公因数有:1、2、3、6。
12与18的最大公因数是6。
这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。
12=2×2×3
18=2×3×3
12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公因数2和3,而它们的乘积2×3=6,就是12与18的最大公因数。
采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公因数和最大公因数。如果把这两个数合在一起短除,则更容易。
从短除中不难看出,12与18都有公因数2和3,它们的乘积2×3=6就是12与18的最大公因数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公因数,就是这两个数的公共质因数的连乘积。
实际应用中,是把需要计算的两个或多个数放置在一起,进行短除,如附图1。
在计算多个数的最小公倍数时,对其中任意两个数存在的因数都要算出,其它无此因数的数则原样落下。最后把所有因数和最终剩下每两个都是互质关系(除1以外没有其他公因数)的数连乘即得到最小公倍数。如图2。
展开全部
短除法,也称欧几里得算法或辗转相除法,是一种用于计算两个整数的最大公因数的有效方法。它的基本思想是通过反复用较小的数去除较大的数,直到余数为0为止,此时较小的数即为最大公因数。
以下是短除法的步骤:
将两个整数 a 和 b 用较大的数除以较小的数,即将 b 除以 a,并得到余数 r。
如果余数 r 为0,则较小的数 a 即为最大公因数。
如果余数 r 不为0,则将较小的数 a 与余数 r 重复上述步骤,即将 a 除以 r,并得到新的余数 r1。
重复步骤3,直到余数为0,此时最后一个非零余数即为最大公因数。
48 ÷ 30 = 1 ... 18,余数为18
30 ÷ 18 = 1 ... 12,余数为12
18 ÷ 12 = 1 ... 6,余数为6
12 ÷ 6 = 2 ... 0,余数为0
例如,计算 48 和 30 的最大公因数:
因此,48 和 30 的最大公因数为6。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
短除法 求最大公因数的一种方法,也可用来求最小公倍数。求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询